论文标题

基于降低的密度矩阵的有效自适应变分量子求解器

An efficient adaptive variational quantum solver of the Schrodinger equation based on reduced density matrices

论文作者

Liu, Jie, Li, Zhenyu, Yang, Jinlong

论文摘要

最近,Grimsley等人提出了一种称为适应性衍生化组装的伪trotter ansatz变量量子量子质量(Adapt-VQE)。 (Nat。Commun。10,3007)而执行此算法量表O(n^8)所需的测量数量。在这项工作中,我们提出了基于Adapt-VQE的有效自适应变异量子求解器以及降低的密度矩阵重建方法,从而将测量数量从O(n^8)减少到O(n^4)。由于低电路复杂性和降低的测量,该新算法非常适合在近期噪声中间尺度上的化学系统模拟中进行量子模拟。小分子的数值基准计算表明,该新算法提供了对地面势能曲线的准确描述。此外,我们将这种新算法概括为具有变化量子通气方法的激发态,并达到与基态模拟相同的精度。

Recently, an adaptive variational algorithm termed Adaptive Derivative-Assembled Pseudo-Trotter ansatz Variational Quantum Eigensolver (ADAPT-VQE) has been proposed by Grimsley et al. (Nat. Commun. 10, 3007) while the number of measurements required to perform this algorithm scales O(N^8). In this work, we present an efficient adaptive variational quantum solver of the Schrodinger equation based on ADAPT-VQE together with the reduced density matrix reconstruction approach, which reduces the number of measurements from O(N^8) to O(N^4). This new algorithm is quite suitable for quantum simulations of chemical systems on near-term noisy intermediate-scale hardware due to low circuit complexity and reduced measurement. Numerical benchmark calculations for small molecules demonstrate that this new algorithm provides an accurate description of the ground-state potential energy curves. In addition, we generalize this new algorithm for excited states with the variational quantum deflation approach and achieve the same accuracy as ground-state simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源