论文标题

通过Gumbel-Max方程学习符号表达式学习者网络

Learning Symbolic Expressions via Gumbel-Max Equation Learner Networks

论文作者

Chen, Gang

论文摘要

通过最先进的机器学习技术学到的大多数神经网络(NNS)都是黑盒模型。为了在科学和工程学中取得广泛的成功,重要的是开发新的NN体系结构以有效地从复杂的数据集中提取高级数学知识。在这种理解的推动下,本文开发了一种新的NN体系结构,称为Gumbel-Max方程学习者(GMEQL)网络。与先前提出的方程学习者(EQL)网络不同,GMEQL通过Gumbel-Max Trick将连续放松应用于网络结构,并引入了两种类型的可训练参数:结构参数和回归参数。本文还提出了一个两阶段的培训过程,采用新技术,以基于精英存储库的在线和离线设置进行培训结构参数。在8个基准测试符号回归问题上,GMEQL在实验上显示出优于几种尖端的机器学习方法。

Most of the neural networks (NNs) learned via state-of-the-art machine learning techniques are black-box models. For a widespread success of machine learning in science and engineering, it is important to develop new NN architectures to effectively extract high-level mathematical knowledge from complex datasets. Motivated by this understanding, this paper develops a new NN architecture called the Gumbel-Max Equation Learner (GMEQL) network. Different from previously proposed Equation Learner (EQL) networks, GMEQL applies continuous relaxation to the network structure via the Gumbel-Max trick and introduces two types of trainable parameters: structure parameters and regression parameters. This paper also proposes a two-stage training process with new techniques to train structure parameters in both online and offline settings based on an elite repository. On 8 benchmark symbolic regression problems, GMEQL is experimentally shown to outperform several cutting-edge machine learning approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源