论文标题

无限尺寸的收费公路

Turnpike in infinite dimension

论文作者

Leonetti, Paolo, Caprio, Michele

论文摘要

令$φ$为来自规范矢量空间$ x $的信件,让$ u:x \ to \ mathbf {r} $成为一个函数,$ \ mathcal {i} $是$ \ mathbf {n} $的理想选择。另外,假设$ u $在$φ$的固定点上的限制具有唯一的最大化器$η^\ star $。然后,我们考虑可行的路径$(x_0,x_1,\ ldots)$,其中$ x $中的值,使所有$ n \ ge 0 $ inφ(x_n)$中的$ x_ {n+1} \。在某些其他条件下,我们证明了以下收费公路结果:每一个可行的路径$(x_0,x_1,\ ldots)$,最大化最小的$ \ nathcal {i} $ - 序列$(u(x_0),u(x_1),u(x_1),\ ldots,\ ldots)$ consect $ $ \ nath $ nymate $ contres $ contres $ consect $(x_0),u(x_1),u(x_1),\ ldots)$ cancer of star conter y of star conter of star conter of starcal o} $ {i} $ {i}; 我们提供的例子一方面证明了结果的假设是合理的,另一方面,证明我们包括了相关文献中以前未考虑的新案例。

Let $Φ$ be a correspondence from a normed vector space $X$ into itself, let $u: X\to \mathbf{R}$ be a function, and $\mathcal{I}$ be an ideal on $\mathbf{N}$. Also, assume that the restriction of $u$ on the fixed points of $Φ$ has a unique maximizer $η^\star$. Then, we consider feasible paths $(x_0,x_1,\ldots)$ with values in $X$ such that $x_{n+1} \in Φ(x_n)$ for all $n\ge 0$. Under certain additional conditions, we prove the following turnpike result: every feasible path $(x_0,x_1,\ldots)$ which maximizes the smallest $\mathcal{I}$-cluster point of the sequence $(u(x_0),u(x_1),\ldots)$ is necessarily $\mathcal{I}$-convergent to $η^\star$. We provide examples that, on the one hand, justify the hypotheses of our result and, on the other hand, prove that we are including new cases which were previously not considered in the related literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源