论文标题
立方第四阶非线性schrödinger方程的准不变高斯措施在负空间中
Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation in negative Sobolev spaces
论文作者
论文摘要
我们继续研究高斯措施在立方第四阶非线性Schrödinger方程的动力学下在Sobolev空间上的运输特性。通过考虑重新归一化的方程式,我们将准不变性扩展到[30,27]到负期的Sobolev空间。我们的证明结合了Planchon,Tzvetkov和Visciglia [35]引入的方法与[30,27]中的正常形式方法。
We continue the study on the transport properties of the Gaussian measures on Sobolev spaces under the dynamics of the cubic fourth order nonlinear Schrödinger equation. By considering the renormalized equation, we extend the quasi-invariance results in [30, 27] to Sobolev spaces of negative regularity. Our proof combines the approach introduced by Planchon, Tzvetkov, and Visciglia [35] with the normal form approach in [30, 27].