论文标题
可解释的机器学习高能粒子碰撞的基础物理
Explainable machine learning of the underlying physics of high-energy particle collisions
论文作者
论文摘要
我们提出了一种可解释的,物理意识的机器学习模型,该模型能够使用最终状态粒子的能量摩托车四媒介中编码的信息来推断高能粒子碰撞的基本物理。我们使用生成的对抗网络(GAN)证明了我们的白盒AI方法的概念验证,该方法从基于DGLAP的Parton淋浴蒙特卡洛事件生成器中学习。我们首次表明我们的方法导致网络不仅能够学习粒子的最终分布,还可以学习基础的Parton分支机制,即pararelli-Parisi分裂函数,淋浴的订购变量和缩放行为。虽然当前的工作集中在Parton淋浴的扰动物理上,但我们预计我们的框架广泛应用于目前在QCD中很难解决的领域。例子包括非扰动和集体效应,分解破裂以及重型离子中的Parton淋浴的修改以及电子核核粉。
We present an implementation of an explainable and physics-aware machine learning model capable of inferring the underlying physics of high-energy particle collisions using the information encoded in the energy-momentum four-vectors of the final state particles. We demonstrate the proof-of-concept of our White Box AI approach using a Generative Adversarial Network (GAN) which learns from a DGLAP-based parton shower Monte Carlo event generator. We show, for the first time, that our approach leads to a network that is able to learn not only the final distribution of particles, but also the underlying parton branching mechanism, i.e. the Altarelli-Parisi splitting function, the ordering variable of the shower, and the scaling behavior. While the current work is focused on perturbative physics of the parton shower, we foresee a broad range of applications of our framework to areas that are currently difficult to address from first principles in QCD. Examples include nonperturbative and collective effects, factorization breaking and the modification of the parton shower in heavy-ion, and electron-nucleus collisions.