论文标题
陆地行星的内部供水能力以及水合对M-R关系的影响
Internal water storage capacity of terrestrial planets and the effect of hydration on the M-R relation
论文作者
论文摘要
了解水与MG硅化物或铁之间的化学相互作用对于限制富含水的行星的内部至关重要。然而,到目前为止,天体物理学界大多忽略了水合效应。由于这种影响不太可能对理论质量 - 拉迪乌斯关系产生重大影响,只要测量不确定性很大,这是合理的。但是,即将到来的任务,例如柏拉图任务(计划的2026年发布),分别为Radii和Masses的精度分别达到高达$ \%$ \%$和$ \%$的精确度。结果,我们可能很快进入了超球星研究中的一个区域,在这些区域中,不再忽略各种物理和化学作用(例如水合)。我们的目标是为行星构建内部模型,其中包括可靠的核心和地幔水合的处方。这些模型可用于完善先前忽略水合的结果,并指导观察到的系外行星的未来表征。我们已经开发了数值工具来解决具有可变边界条件和组成的多层行星的结构。在这里,我们考虑了三种类型的行星:干燥的内部,水合内部和干燥的内部 +表面海洋,海洋质量分数对应于水合情况下$ \ rm H_2 o $等价的质量分数。我们在水合行星中找到H/OH存储容量,相当于$ 0-6 \ rm \ wt \%\%\ \ rm h_ {2} o $,最多可与$ \ $ \约800 \ rm \ rm \ rm \ km $ $ \ km $深海层。在质量范围内$ 0.1 \ leq m/m_ \ oplus \ leq 3 $水合对总半径的效果被发现为$ \ leq 2.5 \%$,而分化为隔离表面海洋的效果为$ \ leq 5 \ \ \%$。此外,我们发现我们的结果对整体组成非常敏感。
Understanding the chemical interactions between water and Mg-silicates or iron is essential to constrain the interiors of water-rich planets. Hydration effects have, however, been mostly neglected by the astrophysics community so far. As such effects are unlikely to have major impacts on theoretical mass-radius relations this is justified as long as the measurement uncertainties are large. However, upcoming missions, such as the PLATO mission (scheduled launch 2026), are envisaged to reach a precision of up to $\approx 3 \%$ and $\approx 10 \%$ for radii and masses, respectively. As a result, we may soon enter an area in exoplanetary research where various physical and chemical effects such as hydration can no longer be ignored. Our goal is to construct interior models for planets that include reliable prescriptions for hydration of the cores and the mantles. These models can be used to refine previous results for which hydration has been neglected and to guide future characterization of observed exoplanets. We have developed numerical tools to solve for the structure of multi-layered planets with variable boundary conditions and compositions. Here we consider three types of planets: dry interiors, hydrated interiors and dry interiors + surface ocean where the ocean mass fraction corresponds to the mass fraction of $\rm H_2 O$ equivalent in the hydrated case. We find H/OH storage capacities in the hydrated planets equivalent to $0-6 \rm \ wt\% \ \rm H_{2}O$ corresponding to up to $\approx 800 \rm \ km$ deep ocean layers. In the mass range $0.1 \leq M/M_\oplus \leq 3$ the effect of hydration on the total radius is found to be $\leq 2.5\%$ whereas the effect of differentiation into an isolated surface ocean is $\leq 5 \ \%$. Furthermore, we find that our results are very sensitive to the bulk composition.