论文标题

纳米厚度外延石墨烯/CO/重金属异质结构中大的垂直磁各向异性的起源

Origin of the Large Perpendicular Magnetic Anisotropy in Nanometer-thick Epitaxial Graphene/Co/Heavy Metal Heterostructures

论文作者

Blanco-Rey, M., Perna, P., Gudin, A., Diez, J. M., Costa, A. Anadon Leticia de Melo, Valvidares, Manuel, Gargiani, Pierluigi, Guedeja-Marron, Alejandra, Cabero, Mariona, Varela, M., Garcia-Fernandez, C., Otrokov, M. M., Camarero, J., Miranda, R., Arnau, A., Cerda, J. I.

论文摘要

理论建模和实验的结合揭示了大型垂直磁各向异性(PMA)的起源,该磁性厚度薄膜在纳米厚 - 厚的外延膜中出现在石墨烯(GR)和重金属(HM)底物之间,作为CO厚度的功能。高质量的外在gr/co \ n/hm(111)(hm = pt,ir)异质结构是通过在石墨烯下面的互动而生长的,它是一种表面活性剂,该表面活性剂在动力学上稳定了高度稳定高度完美的面对面co式的四型胶片($ fct $)的高度完美的构造,并且仅与构造型号相比,该构建量是堆积的,该胶片仅由构造的构建量与无效数量相同,该构成量的高度分布,该构成量的高度分布数量。扫描传输电子显微镜(HR-STEM)。磁磁kerr效应(MOKE)的测量表明,此类异质结构的临界厚度为大约4〜nm(20〜ml)和2〜nm(10〜ml)的PT和IR底物的大量CO临界厚度,而X射线磁性圆形二色性(XMCD)的厚度均显示出X射线磁性磁力均匀性,而X射线磁性计量均具有反向型法律,或者均显示了一个反向型法。界面性质,在大约相同的临界值处更改符号。第一原理计算表明,无论石墨烯的存在如何,理想的Co $ fct $胶片在HM缓冲液上的胶片都不会使PMA持续超过6 〜mls,这是由于内部散装型层的平面贡献。仅通过促进局部$ HCP $堆叠的结构缺陷(例如双边界或堆叠故障)来检索维持PMA的大型实验临界厚度。值得注意的是,对轨道动量各向异性的分析层解析可再现其界面性质,并揭示了GR/CO界面的贡献与CO/PT(IR)的贡献相当。

A combination of theoretical modelling and experiments reveals the origin of the large perpendicular magnetic anisotropy (PMA) that appears in nanometer-thick epitaxial Co films intercalated between graphene (Gr) and a heavy metal (HM) substrate, as a function of the Co thickness. High quality epitaxial Gr/Co\n/HM(111) (HM=Pt,Ir) heterostructures are grown by intercalation below graphene, which acts as a surfactant that kinetically stabilizes the pseudomorphic growth of highly perfect Co face-centered tetragonal ($fct$) films, with a reduced number of stacking faults as the only structural defect observable by high resolution scanning transmission electron microscopy (HR-STEM). Magneto-optic Kerr effect (MOKE) measurements show that such heterostructures present PMA up to large Co critical thicknesses of about 4~nm (20~ML) and 2~nm (10~ML) for Pt and Ir substrates, respectively, while X-ray magnetic circular dichroism (XMCD) measurements show an inverse power law of the anistropy of the orbital moment with Co thickness, reflecting its interfacial nature, that changes sign at about the same critical values. First principles calculations show that, regardless of the presence of graphene, ideal Co $fct$ films on HM buffers do not sustain PMAs beyond around 6~MLs due to the in-plane contribution of the inner bulk-like Co layers. The large experimental critical thicknesses sustaining PMA can only be retrieved by the inclusion of structural defects that promote a local $hcp$ stacking such as twin boundaries or stacking faults. Remarkably, a layer resolved analysis of the orbital momentum anisotropy reproduces its interfacial nature, and reveals that the Gr/Co interface contribution is comparable to that of the Co/Pt(Ir).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源