论文标题

使用遥感和气候数据来得出叶片特征的全局图的方法

A Methodology to Derive Global Maps of Leaf Traits Using Remote Sensing and Climate Data

论文作者

Moreno-Martinez, Alvaro, Camps-Valls, Gustau, Kattge, Jens, Robinson, Nathaniel, Reichstein, Markus, van Bodegom, Peter, Kramer, Koen, Cornelissen, J. Hans C., Reich, Peter, Bahn, Michael, Niinemets, Ulo, Peñuelas, Josep, Craine, Joseph, Cerabolini, Bruno E. L., Minden, Vanessa, Laughlin, Daniel C., Sack, Lawren, Allred, Brady, Baraloto, Christopher, Byun, Chaeho, Soudzilovskaia, Nadejda A., Running, Steven W.

论文摘要

本文引入了一个模块化处理链,以得出叶片特征的全球高分辨率图。特别是,我们以500 m的特定叶子面积,干物质含量,叶氮和磷含量为单位的叶子/磷/磷比率为500 m的全局图。处理链利用机器学习技术以及光学遥感数据(MODIS/LANDSAT)以及气候数据,用于间隙填充和高度缩放现场测量的叶片性状。该链首先使用具有替代物的随机森林回归来填补数据库中的空白($> 45 \%的缺失条目),并最大化特征数据集的全局代表性。除了估计的叶片特征的全局图外,我们还提供了从回归模型得出的相关不确定性估计。该过程链是模块化的,可以轻松地容纳新的特征,数据流(特征数据库和遥感数据)和方法。应用的机器学习技术允许将信息增益归因于数据输入,从而为了解工厂和生态系统量表的特质环境关系提供了机会。

This paper introduces a modular processing chain to derive global high-resolution maps of leaf traits. In particular, we present global maps at 500 m resolution of specific leaf area, leaf dry matter content, leaf nitrogen and phosphorus content per dry mass, and leaf nitrogen/phosphorus ratio. The processing chain exploits machine learning techniques along with optical remote sensing data (MODIS/Landsat) and climate data for gap filling and up-scaling of in-situ measured leaf traits. The chain first uses random forests regression with surrogates to fill gaps in the database ($> 45 \% $ of missing entries) and maximize the global representativeness of the trait dataset. Along with the estimated global maps of leaf traits, we provide associated uncertainty estimates derived from the regression models. The process chain is modular, and can easily accommodate new traits, data streams (traits databases and remote sensing data), and methods. The machine learning techniques applied allow attribution of information gain to data input and thus provide the opportunity to understand trait-environment relationships at the plant and ecosystem scales.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源