论文标题

复杂的复杂景观

Complex complex landscapes

论文作者

Kent-Dobias, Jaron, Kurchan, Jorge

论文摘要

我们研究$ p $ -spin模型的马鞍点 - 当它的$ n $变量很复杂时,最好理解的“复合体”(崎ged)景观的示例。这些点是$ n $随机方程$ p-1 $的系统的解决方案。我们解决$ \ overline {\ Mathcal n} $,在$ n \ to \ infty $限制中平均的解决方案数量。我们发现它使BézoutBound $ \ log \ overline {\ Mathcal n} \ sim n \ log(p-1)$饱和。每个鞍座的黑森斯由$ c^\匕首c $的随机矩阵给出,其中$ c $是一个复杂的对称高斯矩阵,转移到对角线。它的频谱具有一个过渡,差距会发展出概括在实际问题中众所周知的“阈值级别”的概念。实际问题的结果以实际参数的限制恢复。在这种情况下,仅解决方案总数的平方根是真实的。就复杂能量而言,解决方案被分为马鞍具有不同拓扑特性的部门。

We study the saddle-points of the $p$-spin model -- the best understood example of a `complex' (rugged) landscape -- when its $N$ variables are complex. These points are the solutions to a system of $N$ random equations of degree $p-1$. We solve for $\overline{\mathcal N}$, the number of solutions averaged over randomness in the $N\to\infty$ limit. We find that it saturates the Bézout bound $\log\overline{\mathcal N}\sim N\log(p-1)$. The Hessian of each saddle is given by a random matrix of the form $C^\dagger C$, where $C$ is a complex symmetric Gaussian matrix with a shift to its diagonal. Its spectrum has a transition where a gap develops that generalizes the notion of `threshold level' well-known in the real problem. The results from the real problem are recovered in the limit of real parameters. In this case, only the square-root of the total number of solutions are real. In terms of the complex energy, the solutions are divided into sectors where the saddles have different topological properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源