论文标题

在学习合适的注意点以增强功能

On Learning the Right Attention Point for Feature Enhancement

论文作者

Lin, Liqiang, Huang, Pengdi, Fu, Chi-Wing, Xu, Kai, Zhang, Hao, Huang, Hui

论文摘要

我们提出了一种基于注意力的新型机制,可以学习用于点云处理任务的增强点特征,例如分类和分割。与先前的作品不同,该作品经过培训以优化预先选择的注意点的权重,我们的方法学会了找到最佳的注意点,以最大程度地提高特定任务的性能,例如点云分类。重要的是,我们主张使用单个注意点来促进语义理解在点特征学习中。具体而言,我们制定了一种新的简单卷积,该卷积结合了输入点及其相应学习的注意点或膝盖的卷积特征。我们的注意机制可以很容易地纳入最新的点云分类和分割网络中。对诸如ModelNet40,ShapenetPart和S3DIS之类的常见基准测试的广泛实验都表明,我们的支持LAP的网络始终优于各自的原始网络,以及其他竞争性替代方案,这些替代方案在我们的LAP框架下采用了预先选择或学到的多个注意点。

We present a novel attention-based mechanism to learn enhanced point features for point cloud processing tasks, e.g., classification and segmentation. Unlike prior works, which were trained to optimize the weights of a pre-selected set of attention points, our approach learns to locate the best attention points to maximize the performance of a specific task, e.g., point cloud classification. Importantly, we advocate the use of single attention point to facilitate semantic understanding in point feature learning. Specifically, we formulate a new and simple convolution, which combines convolutional features from an input point and its corresponding learned attention point, or LAP, for short. Our attention mechanism can be easily incorporated into state-of-the-art point cloud classification and segmentation networks. Extensive experiments on common benchmarks such as ModelNet40, ShapeNetPart, and S3DIS all demonstrate that our LAP-enabled networks consistently outperform the respective original networks, as well as other competitive alternatives, which employ multiple attention points, either pre-selected or learned under our LAP framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源