论文标题

SEARNET2021:一种新型的大规模数据集和预测局部气候影响的挑战

EarthNet2021: A novel large-scale dataset and challenge for forecasting localized climate impacts

论文作者

Requena-Mesa, Christian, Benson, Vitus, Denzler, Joachim, Runge, Jakob, Reichstein, Markus

论文摘要

气候变化是全球性的,但其具体影响可能会在同一地区的不同位置之间发生巨大变化。季节性天气预报目前在中尺度(> 1公里)运行。对于更有针对性的缓解和适应,需要对<100 m的建模影响。然而,当前物理模型在这种局部尺度上驾驶变量与地球表面之间的关系仍未解决。现在,大型的地球观测数据集使我们能够创建能够将粗糙天气信息转化为高分辨率地球表面预测的机器学习模型。在这里,我们将高分辨率的地面预测定义为卫星图像的视频预测,条件是在中尺度的天气预报上。视频预测已通过深度学习模型解决。开发此类模型需要准备分析的数据集。我们介绍了一个新的,一个新的策划数据集,其中包含目标时空前哨2卫星图像,分辨率为20 m,与高分辨率地形和中尺度(1.28 km)天气变量相匹配。有超过32000个样本,适用于训练深神网络。比较多个地面表面预测并不是微不足道的。因此,我们定义了地球杆,这是一种预测地面反射率的模型的新排名标准。对于模型对比,我们将SEARNET2021框架为基于不同测试集的四个轨道的挑战。这些允许评估模型有效性和鲁棒性以及模型适用于极端事件和完整的年植被周期。除了通过卫星衍生的植被指数预测直接可观察到的天气影响外,功能强大的地面模型还可以实现下游应用,例如作物产量预测,森林健康评估,海岸线管理或生物多样性监测。查找数据,代码以及如何参与www.earthnet.tech。

Climate change is global, yet its concrete impacts can strongly vary between different locations in the same region. Seasonal weather forecasts currently operate at the mesoscale (> 1 km). For more targeted mitigation and adaptation, modelling impacts to < 100 m is needed. Yet, the relationship between driving variables and Earth's surface at such local scales remains unresolved by current physical models. Large Earth observation datasets now enable us to create machine learning models capable of translating coarse weather information into high-resolution Earth surface forecasts. Here, we define high-resolution Earth surface forecasting as video prediction of satellite imagery conditional on mesoscale weather forecasts. Video prediction has been tackled with deep learning models. Developing such models requires analysis-ready datasets. We introduce EarthNet2021, a new, curated dataset containing target spatio-temporal Sentinel 2 satellite imagery at 20 m resolution, matched with high-resolution topography and mesoscale (1.28 km) weather variables. With over 32000 samples it is suitable for training deep neural networks. Comparing multiple Earth surface forecasts is not trivial. Hence, we define the EarthNetScore, a novel ranking criterion for models forecasting Earth surface reflectance. For model intercomparison we frame EarthNet2021 as a challenge with four tracks based on different test sets. These allow evaluation of model validity and robustness as well as model applicability to extreme events and the complete annual vegetation cycle. In addition to forecasting directly observable weather impacts through satellite-derived vegetation indices, capable Earth surface models will enable downstream applications such as crop yield prediction, forest health assessments, coastline management, or biodiversity monitoring. Find data, code, and how to participate at www.earthnet.tech .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源