论文标题
查询自然语言企业搜索的理解
Query Understanding for Natural Language Enterprise Search
论文作者
论文摘要
自然语言搜索(NLS)扩展了执行关键字搜索的搜索引擎的功能,允许用户以更“自然”的语言发出查询。引擎试图理解查询的含义,并将查询单词映射到其支持的符号,例如人员,组织,时间表达式等。然后,它可以检索满足用户需求的信息,以不同的形式,如答案,记录或记录列表。我们提出了一个NLS系统,作为主要CRM平台搜索服务的一部分。该系统目前正在为数千个客户提供生产。我们的用户研究表明,与通过导航搜索获得相同的结果相比,使用NLS创建动态报告可节省超过50%的用户时间。我们描述了系统的架构,CRM领域的特殊性以及它们如何影响我们的设计决策。在系统的几个子模型中,我们详细介绍了一个名为实体识别器的深度学习的作用。本文以讨论在开发该产品时所学到的教训的讨论结束。
Natural Language Search (NLS) extends the capabilities of search engines that perform keyword search allowing users to issue queries in a more "natural" language. The engine tries to understand the meaning of the queries and to map the query words to the symbols it supports like Persons, Organizations, Time Expressions etc.. It, then, retrieves the information that satisfies the user's need in different forms like an answer, a record or a list of records. We present an NLS system we implemented as part of the Search service of a major CRM platform. The system is currently in production serving thousands of customers. Our user studies showed that creating dynamic reports with NLS saved more than 50% of our user's time compared to achieving the same result with navigational search. We describe the architecture of the system, the particularities of the CRM domain as well as how they have influenced our design decisions. Among several submodules of the system we detail the role of a Deep Learning Named Entity Recognizer. The paper concludes with discussion over the lessons learned while developing this product.