论文标题
杂化微波扫描探针,用于解决纳米光腔中的固态旋转
Hybrid microwave-optical scanning probe for addressing solid-state spins in nanophotonic cavities
论文作者
论文摘要
基于固态原子缺陷的自旋光子接口已启用了量子信息处理中的各种关键应用程序。为了最大程度地提高光耦合强度,通常将缺陷放置在纳米级设备内。有效地将光线和微波辐射融入这些结构是一个实验性挑战,尤其是在样品访问有限的低温或高真空环境中。在这项工作中,我们演示了一种基于纤维的扫描探针,该探针同时将光线融合到平面光子电路中,并提供高功率微波炉以驱动电子自旋跃迁。光学部分达到了46%的单向耦合效率,而微波部分则提供了AC磁场的强度高达9个高斯。可以在没有自由空间光学访问的$^3 $中扫描整个探针。我们用硅纳米电路电路与单个ER $^{3+} $ ions一起演示了这项技术。
Spin-photon interfaces based on solid-state atomic defects have enabled a variety of key applications in quantum information processing. To maximize the light-matter coupling strength, defects are often placed inside nanoscale devices. Efficiently coupling light and microwave radiation into these structures is an experimental challenge, especially in cryogenic or high vacuum environments with limited sample access. In this work, we demonstrate a fiber-based scanning probe that simultaneously couples light into a planar photonic circuit and delivers high power microwaves for driving electron spin transitions. The optical portion achieves 46% one-way coupling efficiency, while the microwave portion supplies an AC magnetic field with strength up to 9 Gauss. The entire probe can be scanned across a large number of devices inside a $^3$He cryostat without free-space optical access. We demonstrate this technique with silicon nanophotonic circuits coupled to single Er$^{3+}$ ions.