论文标题

用于高维运动计划的成本函数生成网络

Cost-to-Go Function Generating Networks for High Dimensional Motion Planning

论文作者

Huh, Jinwook, Isler, Volkan, Lee, Daniel D.

论文摘要

本文介绍了C2G-HOF网络,这些网络学会为操纵器运动计划生成成本到行动的功能。 C2G-HOF架构由表示为神经网络(C2G-NETWORK)的配置空间上的成本函数以及高阶函数(HOF)网络组成,该网络为给定的输入工作区输出C2G网络的权重。这两个网络均使用从传统运动计划者计算的成本以监督方式端对端训练。经过训练后,C2G-HOF可以直接从工作区传感器输入(以3D中的点云或2D中的图像表示)直接从工作区传感器输入中生成平稳而连续的成本函数。在推理时,C2G网络的权重非常有效地计算出来,并且仅通过遵循成本到GO功能的梯度来生成近乎最佳的轨迹。我们将C2G-HOF与各种机器人和计划场景的传统计划算法进行比较。实验结果表明,使用C2G-HOF的计划明显快于其他运动计划算法,在包括碰撞检查时会改善数量级。此外,尽管接受了配置空间中的稀疏采样轨迹训练,但C2G-HOF概括以产生更顺畅的成本较低的轨迹。我们在7 DOF操纵器组上展示了基于成本的计划,其中复杂工作区中的运动计划仅需要整个轨迹的0.13秒。

This paper presents c2g-HOF networks which learn to generate cost-to-go functions for manipulator motion planning. The c2g-HOF architecture consists of a cost-to-go function over the configuration space represented as a neural network (c2g-network) as well as a Higher Order Function (HOF) network which outputs the weights of the c2g-network for a given input workspace. Both networks are trained end-to-end in a supervised fashion using costs computed from traditional motion planners. Once trained, c2g-HOF can generate a smooth and continuous cost-to-go function directly from workspace sensor inputs (represented as a point cloud in 3D or an image in 2D). At inference time, the weights of the c2g-network are computed very efficiently and near-optimal trajectories are generated by simply following the gradient of the cost-to-go function. We compare c2g-HOF with traditional planning algorithms for various robots and planning scenarios. The experimental results indicate that planning with c2g-HOF is significantly faster than other motion planning algorithms, resulting in orders of magnitude improvement when including collision checking. Furthermore, despite being trained from sparsely sampled trajectories in configuration space, c2g-HOF generalizes to generate smoother, and often lower cost, trajectories. We demonstrate cost-to-go based planning on a 7 DoF manipulator arm where motion planning in a complex workspace requires only 0.13 seconds for the entire trajectory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源