论文标题

立体声匹配的直接深度学习网络

Direct Depth Learning Network for Stereo Matching

论文作者

Zhang, Hong, Li, Haojie, Chen, Shenglun, Yan, Tiantian, Wang, Zhihui, Lu, Guo, Ouyang, Wanli

论文摘要

作为自动驾驶的关键任务,立体声匹配近年来取得了长足的进步。现有的立体声匹配方法估计差异而不是深度。他们将差异误差视为深度估计误差的评估度量,因为可以根据三角剖分原理从差异计算深度。但是,我们发现深度的误差不仅取决于差异的误差,还取决于点的深度范围。因此,即使差异误差很小,深度误差仍然很大,尤其是对于遥远的点。在本文中,新颖的直接深度学习网络(DDL-NET)是为立体声匹配而设计的。 DDL-NET由两个阶段组成:粗糙深度估计阶段和自适应深度细化阶段,它们都是由深度而不是差异监督的。具体而言,粗糙深度估计阶段均匀地根据深度范围对匹配的候选物进行采样,以构建成本量和输出粗糙深度。自适应颗粒的深度细化阶段在粗糙深度附近进行进一步的匹配,以纠正不精确的匹配和错误的匹配。为了使自适应颗粒的深度细化阶段适合粗糙深度和适应点的深度范围,引入了粒度不确定性,以使自适应粒度的深度细化阶段。粒度不确定性调节匹配范围,并根据粗糙的预测置信度和深度范围选择候选人的特征。我们通过不同的深度指标来验证场景流数据集和DrivingsTereo数据集的DDL-NET的性能。结果表明,DDL-NET在场景流数据集上的平均提高25%,在DrivingsTereo数据集上比较了经典方法的DDL-NET,$ 12 \%$。更重要的是,我们在较大距离上实现了最先进的准确性。

Being a crucial task of autonomous driving, Stereo matching has made great progress in recent years. Existing stereo matching methods estimate disparity instead of depth. They treat the disparity errors as the evaluation metric of the depth estimation errors, since the depth can be calculated from the disparity according to the triangulation principle. However, we find that the error of the depth depends not only on the error of the disparity but also on the depth range of the points. Therefore, even if the disparity error is low, the depth error is still large, especially for the distant points. In this paper, a novel Direct Depth Learning Network (DDL-Net) is designed for stereo matching. DDL-Net consists of two stages: the Coarse Depth Estimation stage and the Adaptive-Grained Depth Refinement stage, which are all supervised by depth instead of disparity. Specifically, Coarse Depth Estimation stage uniformly samples the matching candidates according to depth range to construct cost volume and output coarse depth. Adaptive-Grained Depth Refinement stage performs further matching near the coarse depth to correct the imprecise matching and wrong matching. To make the Adaptive-Grained Depth Refinement stage robust to the coarse depth and adaptive to the depth range of the points, the Granularity Uncertainty is introduced to Adaptive-Grained Depth Refinement stage. Granularity Uncertainty adjusts the matching range and selects the candidates' features according to coarse prediction confidence and depth range. We verify the performance of DDL-Net on SceneFlow dataset and DrivingStereo dataset by different depth metrics. Results show that DDL-Net achieves an average improvement of 25% on the SceneFlow dataset and $12\%$ on the DrivingStereo dataset comparing the classical methods. More importantly, we achieve state-of-the-art accuracy at a large distance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源