论文标题
混乱和局部多体量子系统中的光谱Lyapunov指数
Spectral Lyapunov exponents in chaotic and localized many-body quantum systems
论文作者
论文摘要
我们考虑了Floquet操作员在其量子混沌和多体局部相(MBL)中定期驱动的旋转链的光谱统计数据。频谱统计的特征是浮点操作员的功率$ t $的痕迹,我们的方法取决于以下事实:对于具有局部交互的整数$ t $,可以根据双传输矩阵的产物来表达这些痕迹,每个轨迹都代表系统的空间切片。我们专注于以Lyapunov指数为代表的双传输矩阵产品的属性,我们称之为\ textIt {spectral lyapunov指数}。特别是,我们检查了区分混乱和MBL相的频谱的特征。可以使用时间翻译对称性对传递矩阵进行块 - 二进制化,因此光谱lyapunov指数是根据时间方向上的动量进行分类的。对于大$ t $,我们认为,在混乱阶段,每个动量部门的领先的Lyapunov指数往往为零,而它们在MBL阶段保持有限。这些结论基于三种互补类型的计算结果。我们通过考虑在大$ q $限制中使用现场Hilbert Space Dimension $ Q $的Floquet Random量子电路来找到混乱阶段的确切结果。在MBL阶段,我们表明光谱Lyapunov指数通过系统地分析非相互作用系统,弱耦合系统和局部运动积分的模型来保持有限。从数值上讲,我们计算了Floquet随机量子电路的Lyapunov指数和两个阶段中的踢ising模型。作为另一个结果,我们以较大的$ q $限制准确地计算出更高的点频谱形式(HPSF),并表明在所有HPSFF的系统尺寸中,在大$ q $ chaotial阶段中,无数的th th时间尺度对数进行了对数。
We consider the spectral statistics of the Floquet operator for disordered, periodically driven spin chains in their quantum chaotic and many-body localized phases (MBL). The spectral statistics are characterized by the traces of powers $t$ of the Floquet operator, and our approach hinges on the fact that, for integer $t$ in systems with local interactions, these traces can be re-expressed in terms of products of dual transfer matrices, each representing a spatial slice of the system. We focus on properties of the dual transfer matrix products as represented by a spectrum of Lyapunov exponents, which we call \textit{spectral Lyapunov exponents}. In particular, we examine the features of this spectrum that distinguish chaotic and MBL phases. The transfer matrices can be block-diagonalized using time-translation symmetry, and so the spectral Lyapunov exponents are classified according to a momentum in the time direction. For large $t$ we argue that the leading Lyapunov exponents in each momentum sector tend to zero in the chaotic phase, while they remain finite in the MBL phase. These conclusions are based on results from three complementary types of calculation. We find exact results for the chaotic phase by considering a Floquet random quantum circuit with on-site Hilbert space dimension $q$ in the large-$q$ limit. In the MBL phase, we show that the spectral Lyapunov exponents remain finite by systematically analyzing models of non-interacting systems, weakly coupled systems, and local integrals of motion. Numerically, we compute the Lyapunov exponents for a Floquet random quantum circuit and for the kicked Ising model in the two phases. As an additional result, we calculate exactly the higher point spectral form factors (hpSFF) in the large-$q$ limit, and show that the generalized Thouless time scales logarithmically in system size for all hpSFF in the large-$q$ chaotic phase.