论文标题

与长持续伽马射线相关的质子质子的后质体现在太阳大气上

Energetic Proton Back-Precipitation onto the Solar Atmosphere in Relation to Long-Duration Gamma-Ray Flares

论文作者

Hutchinson, Adam, Dalla, Silvia, Laitinen, Timo, de Nolfo, Georgia A., Bruno, Alessandro, Ryan, James M., Waterfall, Charlotte O. G.

论文摘要

长期伽马射线耀斑(LDGRF)事件期间的伽马射线发射被认为主要是由$> $> $ 300的$ 300 meV质子引起的,这些质子与Photosphere或附近的环境等离子体相互作用。长时间的伽马射线发射时期促使人们的建议是,在冠状质量射出(CME)驱动的冲击中,能量质子的来源是加速度,然后在延长的时间内将粒子的后沉积到太阳大气中。我们使用测试粒子模拟研究了后一种假设,这使我们能够研究与湍流相关的散射是否有助于粒子克服磁性镜像的效果,从而阻碍了反向沉积,而反射颗粒在阳光下传播。瞬时降水分数,$ p $,在固定高度上成功沉淀注射的质子比例是$ r_i $,是散射平均自由路径的函数,$λ$和$ r_i $。对于中等散射条件($λ$ = 0.1 au),计算了八个LDGRF事件的总降水分数的上限,即$ \ Overline {P} $。我们发现,与无散射情况相比,散射的存在有助于后缩,尽管在非常低的$λ$值时,太阳风最终会占主导地位。对于八个LDGRF事件,由于强烈的镜像,$ \ Overline {p} $很小,即使在散射存在的情况下,也会在0.56%至0.93%之间。如观测值所示,随着时间扩展的加速度和较大的总降水分数无法根据我们的模拟来调和。因此,在这种情况下,不可能获得长持续时间$γ$射线发射和有效的降水。这些结果挑战了CME冲击源方案,这是LDGRFS中$γ$射线生产的主要机制。

Gamma-ray emission during long-duration gamma-ray flare (LDGRF) events is thought to be caused mainly by $>$300 MeV protons interacting with the ambient plasma at or near the photosphere. Prolonged periods of the gamma-ray emission have prompted the suggestion that the source of the energetic protons is acceleration at a coronal mass ejection (CME)-driven shock, followed by particle back-precipitation onto the solar atmosphere over extended times. We study the latter hypothesis using test particle simulations, which allow us to investigate whether scattering associated with turbulence aids particles in overcoming the effect of magnetic mirroring, which impedes back-precipitation by reflecting particles as they travel sunwards. The instantaneous precipitation fraction, $P$, the proportion of protons that successfully precipitate for injection at a fixed height, $r_i$, is studied as a function of scattering mean free path, $λ$ and $r_i$. Upper limits to the total precipitation fraction, $\overline{P}$, were calculated for eight LDGRF events for moderate scattering conditions ($λ$=0.1 au). We find that the presence of scattering helps back-precipitation compared to the scatter-free case, although at very low $λ$ values outward convection with the solar wind ultimately dominates. For eight LDGRF events, due to strong mirroring, $\overline{P}$ is very small, between 0.56 and 0.93% even in the presence of scattering. Time-extended acceleration and large total precipitation fractions, as seen in the observations, cannot be reconciled for a moving shock source according to our simulations. Therefore, it is not possible to obtain both long duration $γ$ ray emission and efficient precipitation within this scenario. These results challenge the CME shock source scenario as the main mechanism for $γ$ ray production in LDGRFs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源