论文标题

在弱光环境中摄影的闪光和无闪存对的深度降级

Deep Denoising of Flash and No-Flash Pairs for Photography in Low-Light Environments

论文作者

Xia, Zhihao, Gharbi, Michaël, Perazzi, Federico, Sunkavalli, Kalyan, Chakrabarti, Ayan

论文摘要

我们介绍了一种基于神经网络的方法,以在弱光环境中快速连续拍摄的一对图像。我们的目标是生产场景的高质量渲染,从嘈杂的无闪存图像的环境照明中保留了颜色和情绪,同时恢复了闪光灯揭示的表面纹理和细节。我们的网络输出一个增益图和一个内核场,后者是通过线性混合元素的低级内核基准的元素获得的。我们首先将内核字段应用于无闪存图像,然后将结果乘以增益映射以创建最终输出。我们显示我们的网络有效地学会了通过将无闪存图像中现场环境外观的平滑估算结合在一起,并从闪光输入中提取了高频反照率细节,从而产生了高质量的图像。我们的实验表明,对于没有闪光灯的替代捕获,使用闪光灯闪光灯对的基线Deoisiser进行了显着改进。特别是,我们的方法产生的图像既无噪声,又包含精确的环境颜色,而没有尖锐的阴影或闪光图像中可见的强烈镜面亮点。

We introduce a neural network-based method to denoise pairs of images taken in quick succession, with and without a flash, in low-light environments. Our goal is to produce a high-quality rendering of the scene that preserves the color and mood from the ambient illumination of the noisy no-flash image, while recovering surface texture and detail revealed by the flash. Our network outputs a gain map and a field of kernels, the latter obtained by linearly mixing elements of a per-image low-rank kernel basis. We first apply the kernel field to the no-flash image, and then multiply the result with the gain map to create the final output. We show our network effectively learns to produce high-quality images by combining a smoothed out estimate of the scene's ambient appearance from the no-flash image, with high-frequency albedo details extracted from the flash input. Our experiments show significant improvements over alternative captures without a flash, and baseline denoisers that use flash no-flash pairs. In particular, our method produces images that are both noise-free and contain accurate ambient colors without the sharp shadows or strong specular highlights visible in the flash image.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源