论文标题
高斯工艺从Sentinel-2大气顶辐射数据中检索LAI
Gaussian Processes Retrieval of LAI from Sentinel-2 Top-of-Atmosphere Radiance Data
论文作者
论文摘要
从卫星和空气中的光学数据中检索植被特性通常是在大气校正后进行的,但也可以直接从大气顶(TOA)辐射数据直接开发检索算法。如果算法解释了大气中的可变性,则可以从Atsensor Toa辐射数据中检索的关键植被变量之一是叶面积指数(LAI)。我们证明了在混合机学习框架中从Sentinel-2(S2)ToA辐射数据(L1C产品)中检索的可行性。为了实现这一目标,使用耦合的叶片 - 叶片 - 大气辐射转移模型Prosail-6s用于模拟TOA辐射数据和相关输入变量的查找表(LUT)。然后,该LUT用于训练贝叶斯机器学习算法高斯流程回归(GPR)和变分异形GPR(VHGPR)。 Prosail模拟还用于训练GPR和VHGPR模型,以从大气底部(BOA)水平(L2A产品)的S2图像中检索LAI模型,以进行比较。 VHGPR模型导致了BOA和TOA量表的一致LAI地图。我们证明,鉴于无云的天空,可以从TOA辐射数据中开发混合LAI检索算法,因此无需大气校正。
Retrieval of vegetation properties from satellite and airborne optical data usually takes place after atmospheric correction, yet it is also possible to develop retrieval algorithms directly from top-of-atmosphere (TOA) radiance data. One of the key vegetation variables that can be retrieved from at-sensor TOA radiance data is the leaf area index (LAI) if algorithms account for variability in the atmosphere. We demonstrate the feasibility of LAI retrieval from Sentinel-2 (S2) TOA radiance data (L1C product) in a hybrid machine learning framework. To achieve this, the coupled leaf-canopy-atmosphere radiative transfer models PROSAIL-6S were used to simulate a look-up table (LUT) of TOA radiance data and associated input variables. This LUT was then used to train the Bayesian machine learning algorithms Gaussian processes regression (GPR) and variational heteroscedastic GPR (VHGPR). PROSAIL simulations were also used to train GPR and VHGPR models for LAI retrieval from S2 images at bottom-of-atmosphere (BOA) level (L2A product) for comparison purposes. The VHGPR models led to consistent LAI maps at BOA and TOA scale. We demonstrated that hybrid LAI retrieval algorithms can be developed from TOA radiance data given a cloud-free sky, thus without the need for atmospheric correction.