论文标题

非对称稳定操作员:规律性理论和零件的集成

Non-symmetric stable operators: regularity theory and integration by parts

论文作者

Dipierro, Serena, Ros-Oton, Xavier, Serra, Joaquim, Valdinoci, Enrico

论文摘要

我们研究$ lu = f $ in $ω\ subset \ mathbb r^n $的解决方案,是$ l $是任何,可能是非对称,稳定的lévy过程的生成器。 一方面,我们研究了$ω$,$ u = 0 $ in $ω^c $,$ c^{1,α} $ domains〜 $ω$的解决方案的规律性。 We show that solutions $u$ satisfy $u/d^γ\in C^{\varepsilon_\circ}\big(\overlineΩ\big)$, where $d$ is the distance to $\partialΩ$, and $γ=γ(L,ν)$ is an explicit exponent that depends on the Fourier symbol of operator $L$ and on the unit normal $ν$ to the boundary $ \partialΩ$。 另一方面,我们在此类操作员的一半空间中建立了零件身份的新集成。这些新的身份扩展了分数拉普拉斯的先前身份,但是非对称设置呈现出一些新的有趣功能。 最后,我们将零件身份在半空间中的零件身份概括为有限的$ c^{1,α} $域的情况。我们通过一个新的有效近似参数来实现这一目标,该参数利用了$ u/d^γ$的Hölder规律性。我们认为,即使在分数拉普拉斯主义者的情况下,这个新的近似论点也很有趣。

We study solutions to $Lu=f$ in $Ω\subset\mathbb R^n$, being $L$ the generator of any, possibly non-symmetric, stable Lévy process. On the one hand, we study the regularity of solutions to $Lu=f$ in $Ω$, $u=0$ in $Ω^c$, in $C^{1,α}$ domains~$Ω$. We show that solutions $u$ satisfy $u/d^γ\in C^{\varepsilon_\circ}\big(\overlineΩ\big)$, where $d$ is the distance to $\partialΩ$, and $γ=γ(L,ν)$ is an explicit exponent that depends on the Fourier symbol of operator $L$ and on the unit normal $ν$ to the boundary $\partialΩ$. On the other hand, we establish new integration by parts identities in half spaces for such operators. These new identities extend previous ones for the fractional Laplacian, but the non-symmetric setting presents some new interesting features. Finally, we generalize the integration by parts identities in half spaces to the case of bounded $C^{1,α}$ domains. We do it via a new efficient approximation argument, which exploits the Hölder regularity of $u/d^γ$. This new approximation argument is interesting, we believe, even in the case of the fractional Laplacian.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源