论文标题

深度学习分析深度虚拟独家光生产

Deep Learning Analysis of Deeply Virtual Exclusive Photoproduction

论文作者

Grigsby, Jake, Kriesten, Brandon, Hoskins, Joshua, Liuti, Simonetta, Alonzi, Peter, Burkardt, Matthias

论文摘要

我们提出了一种基于机器学习的方法,用于使用非极化和极化电子束从非极化质子靶标的深度虚拟康普顿散射的不对称方法。需要进行机器学习方法来研究并最终解释了深层虚拟独家实验的结果,因为这些反应的特征是复杂的最终状态,并具有大量的运动学变量和可观察到的变量,并指数增加了定量分析的难度。我们的深神经网络(FEMTONET)在数据中发现了出现的特征,并了解了超过标准基线的横截面的准确近似。 FEMTONET揭示了非极化病例中的预测系统地表明的相对中值误差要比极化化较小,而两极化可以归因于伯特·海特勒过程的存在。这还表明,$ t $依赖性比其他变量更容易被推断,即偏斜,$ξ$和四摩托姆转移,$ q^2 $。我们的方法是完全可扩展的,并且可以在将来的实验中释放出较大的数据集时处理较大的数据集。

We present a Machine Learning based approach to the cross section and asymmetries for deeply virtual Compton scattering from an unpolarized proton target using both an unpolarized and polarized electron beam. Machine learning methods are needed to study and eventually interpret the outcome of deeply virtual exclusive experiments since these reactions are characterized by a complex final state with a larger number of kinematic variables and observables, exponentially increasing the difficulty of quantitative analyses. Our deep neural network (FemtoNet) uncovers emergent features in the data and learns an accurate approximation of the cross section that outperforms standard baselines. FemtoNet reveals that the predictions in the unpolarized case systematically show a smaller relative median error than the polarized that can be ascribed to the presence of the Bethe Heitler process. It also suggests that the $t$ dependence can be more easily extrapolated than for the other variables, namely the skewness, $ξ$ and four-momentum transfer, $Q^2$. Our approach is fully scalable and will be capable of handling larger data sets as they are released from future experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源