论文标题

采矿,发现和分析语义人类流动行为的方法

Methodology for Mining, Discovering and Analyzing Semantic Human Mobility Behaviors

论文作者

Moreau, Clement, Devogele, Thomas, Etienne, Laurent, Peralta, Veronika, de Runz, Cyril

论文摘要

各种机构生产大型语义数据集,其中包含有关日常活动和人类流动性的信息。对此类数据的分析和理解对于城市规划,社会心理学,政治科学和流行病学至关重要。但是,尚未对典型的数据挖掘过程进行定制,以彻底分析语义移动序列以将数据转化为可理解的行为。基于扩展文献综述,我们提出了一种名为SIMBA的新型方法论(用于移动性和行为分析的语义指标),用于采矿和分析语义移动序列,以识别一致的信息和人类行为。基于集成不同互补统计指标和视觉工具的基于语义序列移动性分析和聚类的可阐明性的框架。为了验证这种方法,我们使用了从家庭旅行调查中获得的大量实际日常活动序列。互补知识会自动在建议的方法中发现。

Various institutes produce large semantic datasets containing information regarding daily activities and human mobility. The analysis and understanding of such data are crucial for urban planning, socio-psychology, political sciences, and epidemiology. However, none of the typical data mining processes have been customized for the thorough analysis of semantic mobility sequences to translate data into understandable behaviors. Based on an extended literature review, we propose a novel methodological pipeline called simba (Semantic Indicators for Mobility and Behavior Analysis), for mining and analyzing semantic mobility sequences to identify coherent information and human behaviors. A framework for semantic sequence mobility analysis and clustering explicability based on integrating different complementary statistical indicators and visual tools is implemented. To validate this methodology, we used a large set of real daily mobility sequences obtained from a household travel survey. Complementary knowledge is automatically discovered in the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源