论文标题

3D图解剖几何综合网络用于胰腺质量分割,诊断和定量患者管理

3D Graph Anatomy Geometry-Integrated Network for Pancreatic Mass Segmentation, Diagnosis, and Quantitative Patient Management

论文作者

Zhao, Tianyi, Cao, Kai, Yao, Jiawen, Nogues, Isabella, Lu, Le, Huang, Lingyun, Xiao, Jing, Yin, Zhaozheng, Zhang, Ling

论文摘要

胰腺疾病分类法包括十种类型的肿块(肿瘤或囊肿)[20,8]。以前的工作着重于为某些质量类型开发细分或分类方法。所有质量类型的鉴别诊断在临床上是高度可取的[20],但尚未使用自动图像理解方法研究。我们利用多相CT成像来利用区分胰腺导管腺癌(PDAC)和其他九个非PDAC质量的可行性。图像外观和3D器官质量几何关系都是至关重要的。我们提出了一个整体分割网格分类网络(SMCN),通过充分利用几何图形和位置信息来提供患者级别的诊断,这是通过结合解剖结构和逐个细分网络来实现的。 SMCN了解胰腺和质量分割任务,并通过在原始分割掩码上逐渐变形胰腺原型(即掩模到网格),从而构建解剖通讯感知器官网格模型。开发了一个新的基于图的剩余卷积网络(Graph-Resnet),其nodes融合了从分割网络中提取的网格模型和特征向量的信息,以产生患者级别的差异分类结果。对661例患者的CT扫描(每名患者五个阶段)进行的广泛实验表明,与强基线方法NNUNET相比,SMCN可以提高质量分割和检测准确性(例如,对于非PDAC,骰子:0.611 vs. 0.478 vs. 0.478;检测率:89%vs. 70%),并获得相似的敏感性和特定范围,并在相差pd and Advertiation PD pd and Advertion and Aldiative Pd Actiantioly PD。 (即94%和90%),并获得与多模式测试[20]相当的结果,该测试结合了患者临床管理的临床,成像和分子测试。

The pancreatic disease taxonomy includes ten types of masses (tumors or cysts)[20,8]. Previous work focuses on developing segmentation or classification methods only for certain mass types. Differential diagnosis of all mass types is clinically highly desirable [20] but has not been investigated using an automated image understanding approach. We exploit the feasibility to distinguish pancreatic ductal adenocarcinoma (PDAC) from the nine other nonPDAC masses using multi-phase CT imaging. Both image appearance and the 3D organ-mass geometry relationship are critical. We propose a holistic segmentation-mesh-classification network (SMCN) to provide patient-level diagnosis, by fully utilizing the geometry and location information, which is accomplished by combining the anatomical structure and the semantic detection-by-segmentation network. SMCN learns the pancreas and mass segmentation task and builds an anatomical correspondence-aware organ mesh model by progressively deforming a pancreas prototype on the raw segmentation mask (i.e., mask-to-mesh). A new graph-based residual convolutional network (Graph-ResNet), whose nodes fuse the information of the mesh model and feature vectors extracted from the segmentation network, is developed to produce the patient-level differential classification results. Extensive experiments on 661 patients' CT scans (five phases per patient) show that SMCN can improve the mass segmentation and detection accuracy compared to the strong baseline method nnUNet (e.g., for nonPDAC, Dice: 0.611 vs. 0.478; detection rate: 89% vs. 70%), achieve similar sensitivity and specificity in differentiating PDAC and nonPDAC as expert radiologists (i.e., 94% and 90%), and obtain results comparable to a multimodality test [20] that combines clinical, imaging, and molecular testing for clinical management of patients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源