论文标题
通过神经网络对单次旋转量子量检测事件的强大而快速的后处理
Robust and fast post-processing of single-shot spin qubit detection events with a neural network
论文作者
论文摘要
建立量子读数的低纠正和快速检测方法对于有效的量子误差校正至关重要。在这里,我们测试神经网络以对单发旋转检测事件的集合进行分类,这是我们量子测量值的读数信号。该读取信号包含一个随机峰,在理论上,贝叶斯推理过滤器在其中是最佳的。因此,我们基准通过各种策略培训的神经网络与后一种算法进行培训。用10 $^{6} $实验记录的单次读数痕迹对网络进行培训并不能改善后处理性能。与贝叶斯推理过滤器相比,通过合成生成的测量轨迹训练的网络在检测误差和后处理速度方面的性能相似。这种神经网络事实证明,信号偏移,长度和延迟以及信号噪声比的波动更加强大。值得注意的是,当我们采用通过合成读取痕迹训练的网络与我们设置的测量信号噪声相结合时,我们发现Rabi-Ascillation的可见性增加了7%。因此,我们的贡献代表了一个有益角色的示例,即在可扩展的旋转量子量处理器体系结构中,软件和硬件实现可能在哪些角色和硬件实现。
Establishing low-error and fast detection methods for qubit readout is crucial for efficient quantum error correction. Here, we test neural networks to classify a collection of single-shot spin detection events, which are the readout signal of our qubit measurements. This readout signal contains a stochastic peak, for which a Bayesian inference filter including Gaussian noise is theoretically optimal. Hence, we benchmark our neural networks trained by various strategies versus this latter algorithm. Training of the network with 10$^{6}$ experimentally recorded single-shot readout traces does not improve the post-processing performance. A network trained by synthetically generated measurement traces performs similar in terms of the detection error and the post-processing speed compared to the Bayesian inference filter. This neural network turns out to be more robust to fluctuations in the signal offset, length and delay as well as in the signal-to-noise ratio. Notably, we find an increase of 7 % in the visibility of the Rabi-oscillation when we employ a network trained by synthetic readout traces combined with measured signal noise of our setup. Our contribution thus represents an example of the beneficial role which software and hardware implementation of neural networks may play in scalable spin qubit processor architectures.