论文标题

玻璃微球和板之间的热接触电阻的定量测量

Quantitative measurement of the thermal contact resistance between a glass microsphere and a plate

论文作者

Doumouro, Joris, Perros, Elodie, Dodu, Alix, Rahbany, Nancy, Leprat, Dominique, Krachmalnicoff, Valentina, Carminati, Rémi, Poirier, Wilfrid, De Wilde, Yannick

论文摘要

精确测量由绝缘材料制成的微观对象之间的热电阻很复杂,因为它们的尺寸较小,电导率低以及存在各种不确定的间隙。我们使用在真空和空气中操作的修改扫描热显微镜解决此问题。考虑球板的几何形状。在受控的加热能力下,我们测量玻璃微球顶部的温度在探针上粘在探针上,因为它在室温下以纳米精度接近玻璃板。在真空中,接触时观察到跳跃。从温度的跳跃和球体的热电阻的建模中,球体接触电阻$ r_k =(1.4 \ pm 0.18)\ times10^7 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ mathrm {k.w^{ - 1}}} $和有效的半径$ r =(36 \ pm 4)$ nm。在空气中,球体顶部的温度从球形板距离为200 $ \ mathrm {μm} $开始。接触时也观察到跳跃,幅度降低。从接触中耦合的球板耦合可以通过空气中板前面的球体的电阻形状因子来描述,并将其放置在涉及系列的电路中,并通过拟合接近曲线确定的平行电阻。然后,从温度跳跃中估算出空气中的接触电阻$ r^*_ k =(1.2 \ pm 0.46)\ times 10^7 \ \ mathrm {k.w^{ - 1}} $。该方法是定量的,而无需任何乏味的多尺度数值模拟,并且用途广泛,可以描述从较大距离到各种环境中接触的微观对象之间的耦合。

Accurate measurements of the thermal resistance between micro-objects made of insulating materials are complex because of their small size, low conductivity, and the presence of various ill-defined gaps. We address this issue using a modified scanning thermal microscope operating in vacuum and in air. The sphere-plate geometry is considered. Under controlled heating power, we measure the temperature on top of a glass microsphere glued to the probe as it approaches a glass plate at room temperature with nanometer accuracy. In vacuum, a jump is observed at contact. From this jump in temperature and the modeling of the thermal resistance of a sphere, the sphere-plate contact resistance $ R_K=(1.4 \pm 0.18)\times10^7 \ \mathrm{K.W^{-1}}$ and effective radius $r=(36 \pm 4)$ nm are obtained. In air, the temperature on top of the sphere shows a decrease starting from a sphere-plate distance of 200 $\mathrm{μm}$. A jump is also observed at contact, with a reduced amplitude. The sphere-plate coupling out of contact can be described by the resistance shape factor of a sphere in front of a plate in air, placed in a circuit involving a series and a parallel resistance that are determined by fitting the approach curve. The contact resistance in air $R^*_K=(1.2 \pm 0.46)\times 10^7 \ \mathrm{K.W^{-1}}$ is then estimated from the temperature jump. The method is quantitative without requiring any tedious multiple-scale numerical simulation, and is versatile to describe the coupling between micro-objects from large distances to contact in various environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源