论文标题
偏见的完美匹配游戏的速度和阈值
The Speed and Threshold of the Biased Perfect Matching Game
论文作者
论文摘要
我们表明,当偏见至少是$ \ frac {n} {\ log {n}} - \ frac {f(n)n} n} n} n} $ {n} $ {n} $ {$ for vony for vony for vony for vony for vony for vony for vony for vony for noth n osh osh n osh osh n osh n n n osh n osh n osh n osh osh n n n osh n osh n osh n osh n n osh n osh n osh n n n n n} $ {n} $, $ n $和$ n $足够大(在$ f $方面)。
We show that Maker wins the Maker-Breaker perfect matching game in $\frac{n}{2}+o(n)$ turns when the bias is at least $\frac{n}{\log{n}}-\frac{f(n)n}{(\log{n})^{5/4}}$, for any $f$ going to infinity with $n$ and $n$ sufficiently large (in terms of $f$).