论文标题

不同的并发拓扑模型之间的比较

Comparison Between Different Topological Models of Concurrency

论文作者

Lieber, Joshua F.

论文摘要

在本说明中,我们通过一类“实现函数”类别提供了前提集的类别与高彻的流量类别之间的明确非等价等效性(对预忍者集合类别的共同启动有轻度的假设)。此外,我们在证明简单的半酸酯在满足与流量相同的许多属性之前,证明了简单的半伴奏和流之间的quillen等效性。最后,我们介绍了盒装的对称树的类别,前示意剂可能会为并发计算提供比(前)立方集的更灵活的设置,然后才表明,当赋予归化性时,前面提到的前eafeaf类别是一个测试类别(尽管不是严格的测试)。

In this note, we provide an explicit non-Quillen equivalence between the category of precubical sets and Gaucher's category of flows via a class of "realization functors" (with mild assumptions on the cofibrations of the category of precubical sets). In addition, we demonstrate a Quillen equivalence between simplicial semicategories and flows before proving that simplicial semicategories satisfy many of the same properties as flows. Finally, we introduce the category of boxed symmetric trees, presheaves on which may provide a slightly more flexible setting for concurrent computing than (pre)cubical sets, before showing that when endowed with degeneracies, the aforementioned presheaf category is a test category (although not strict test).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源