论文标题
2D偶极杆气的有限温度不稳定性以任意倾斜角度
Finite temperature instabilities of 2D dipolar Bose gas at arbitrary tilt angle
论文作者
论文摘要
创建稳定的偶极玻璃系统和巧妙的盒子陷阱的进步引起了极大的兴趣。在有限温度(T)下偶极玻色子的理论研究受到限制。由这些动机,我们使用有限T随机相位近似研究了2D偶性玻色子,以任意倾斜角,$θ$研究。我们表明,在同时考虑偶极强度,密度,温度和$θ$的同时,可以获得对非零t的相位和不稳定性的全面理解。我们发现该系统处于均匀的非辅助相,该相在大$θ$下经历了崩溃的转变,并且有限动量不稳定,并以较大的偶极强度发出条纹相。 T = 0情况有重要区别。在t = 0时,BEC以临界偶极强度和临界密度出现。我们对极性分子系统的预测,$^{41} k^{87} rb $,$^{166} er $可以提供我们结果的测试。我们的方法可能广泛地适用于具有远程,各向异性相互作用的系统。
Advances in creating stable dipolar Bose systems, and ingenious box traps have generated tremendous interest. Theory study of dipolar bosons at finite temperature (T) has been limited. Motivated by these, we study 2D dipolar bosons at arbitrary tilt angle, $θ$, using finite-T random phase approximation. We show that a comprehensive understanding of phases and instabilities at non-zero T can be obtained on concurrently considering dipole strength, density, temperature and $θ$. We find the system to be in a homogeneous non-condensed phase that undergoes a collapse transition at large $θ$, and a finite momentum instability, signaling a striped phase, at large dipolar strength; there are important differences with the T=0 case. At T = 0, BEC appears at critical dipolar strength, and at critical density. Our predictions for polar molecule system, $^{41}K^{87}Rb$, and $^{166}Er$ may provide tests of our results. Our approach may apply broadly to systems with long-range, anisotropic interactions.