论文标题

内窥镜病变细分弱监督的跨域适应

Weakly-Supervised Cross-Domain Adaptation for Endoscopic Lesions Segmentation

论文作者

Dong, Jiahua, Cong, Yang, Sun, Gan, Yang, Yunsheng, Xu, Xiaowei, Ding, Zhengming

论文摘要

由于大量节省了像素级注释成本,因此弱监督的学习引起了人们对医疗病变细分的越来越多的研究的关注。但是,1)大多数现有方法都需要有效的先验和约束来探索内在的病变表征,这只会产生错误和粗糙的预测; 2)他们忽略了弱标记的目标肠镜疾病和完全注销的源胃镜病变之间的潜在语义依赖性,同时强行利用不可转移的依赖性导致负面性能。为了解决上述问题,我们提出了一个新的弱监督病变转移框架,该框架不仅可以探索不同数据集的可转移域不变知识,而且还可以防止不可转移表示的负面转移。具体而言,开发了Wasserstein量化的可传递性框架,以突出可转移的上下文依赖性,同时忽略了无关的语义特征。此外,一种新颖的自我监管的伪标签生成器旨在同样提供自信的伪像素标签,以用于难以传输和易于转移目标样本。它抑制了在自学的方式下,假伪像素标签的巨大偏差。之后,将动态搜索的特征质心对齐与狭窄类别的分布变化对齐。全面的理论分析和实验表明,我们的模型对内窥镜数据集和几个公共数据集的优越性。

Weakly-supervised learning has attracted growing research attention on medical lesions segmentation due to significant saving in pixel-level annotation cost. However, 1) most existing methods require effective prior and constraints to explore the intrinsic lesions characterization, which only generates incorrect and rough prediction; 2) they neglect the underlying semantic dependencies among weakly-labeled target enteroscopy diseases and fully-annotated source gastroscope lesions, while forcefully utilizing untransferable dependencies leads to the negative performance. To tackle above issues, we propose a new weakly-supervised lesions transfer framework, which can not only explore transferable domain-invariant knowledge across different datasets, but also prevent the negative transfer of untransferable representations. Specifically, a Wasserstein quantified transferability framework is developed to highlight widerange transferable contextual dependencies, while neglecting the irrelevant semantic characterizations. Moreover, a novel selfsupervised pseudo label generator is designed to equally provide confident pseudo pixel labels for both hard-to-transfer and easyto-transfer target samples. It inhibits the enormous deviation of false pseudo pixel labels under the self-supervision manner. Afterwards, dynamically-searched feature centroids are aligned to narrow category-wise distribution shift. Comprehensive theoretical analysis and experiments show the superiority of our model on the endoscopic dataset and several public datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源