论文标题
Genscan:一种用于填充参数3D扫描数据集的生成方法
GenScan: A Generative Method for Populating Parametric 3D Scan Datasets
论文作者
论文摘要
与建筑环境的几何复杂性相对应的丰富3D数据集的可用性被认为是3D深度学习方法的持续挑战。为了应对这一挑战,我们介绍了Genscan,这是一种生成系统,以参数方式填充合成3D扫描数据集。该系统将现有的捕获的3D扫描作为输入,并输出建筑布局的替代变化,包括墙壁,门和家具,并具有相应的纹理。 Genscan是一个全自动系统,也可以通过分配的用户界面手动控制用户。我们提出的系统利用混合深神经网络和参数模块的组合来提取和转换给定3D扫描的元素。 Genscan利用样式转移技术为生成的场景生成新的纹理。我们认为,我们的系统将促进数据扩展,以扩展3D计算机视觉,生成设计和一般3D深度学习任务中常用的当前有限的3D几何数据集。
The availability of rich 3D datasets corresponding to the geometrical complexity of the built environments is considered an ongoing challenge for 3D deep learning methodologies. To address this challenge, we introduce GenScan, a generative system that populates synthetic 3D scan datasets in a parametric fashion. The system takes an existing captured 3D scan as an input and outputs alternative variations of the building layout including walls, doors, and furniture with corresponding textures. GenScan is a fully automated system that can also be manually controlled by a user through an assigned user interface. Our proposed system utilizes a combination of a hybrid deep neural network and a parametrizer module to extract and transform elements of a given 3D scan. GenScan takes advantage of style transfer techniques to generate new textures for the generated scenes. We believe our system would facilitate data augmentation to expand the currently limited 3D geometry datasets commonly used in 3D computer vision, generative design, and general 3D deep learning tasks.