论文标题

$ t \ bar {t} $从随机几何形状的应力调节相关器的变形

$T\bar{T}$ Deformation of Stress-Tensor Correlators from Random Geometry

论文作者

Hirano, Shinji, Nakajima, Tatsuki, Shigemori, Masaki

论文摘要

我们在$ t \ bar {t} $中研究应力调整相关器 - 在两个维度上变形的保形场理论。使用$ t \ bar {t} $变形的随机几何方法,我们开发了一种几何方法来计算应力调节相关器。更具体地说,我们将$ t \ bar {t} $变形推导到polyakov-liouville共形异常动作,并计算出$ t \ bar {t} $从变形的polyakov-liouville Action中的$ t \ bar {t} $变形的三分阶相关器。根据标准的共形扰动理论计算检查结果,我们进一步检查了应力张量的$ t \ bar {t} $ - 变形的操作员产品扩展。 $ t \ bar {t} $ - 变形应力张紧相关器的显着特征是对数校正,在两个和三点函数中不存在,但开始以四点函数出现。

We study stress-tensor correlators in the $T\bar{T}$-deformed conformal field theories in two dimensions. Using the random geometry approach to the $T\bar{T}$ deformation, we develop a geometrical method to compute stress-tensor correlators. More specifically, we derive the $T\bar{T}$ deformation to the Polyakov-Liouville conformal anomaly action and calculate three and four-point correlators to the first-order in the $T\bar{T}$ deformation from the deformed Polyakov-Liouville action. The results are checked against the standard conformal perturbation theory computation and we further check consistency with the $T\bar{T}$-deformed operator product expansions of the stress tensor. A salient feature of the $T\bar{T}$-deformed stress-tensor correlators is a logarithmic correction that is absent in two and three-point functions but starts appearing in a four-point function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源