论文标题
无独立的脑部计算机界面的域概括
Domain Generalization for Session-Independent Brain-Computer Interface
论文作者
论文摘要
脑电图(EEG)(EEG)的间/受试者间变异性使大脑计算机界面(BCI)的实际使用困难。通常,BCI系统需要一个校准程序来获取主题/会话特定的数据,以每次使用系统时调整模型。该问题被认为是BCI的主要障碍,并且为了克服它,最近出现了基于域泛化(DG)的方法。本文的主要目的是重新考虑如何从DG任务的角度克服BCI的零校准问题。就现实情况而言,我们专注于创建一个脑电图分类框架,该框架可以直接在看不见的会话中使用,仅使用先前获得的多主题/ - 主题/ - 主题数据。因此,在本文中,我们通过一项课程验证测试了四个深度学习模型和四种DG算法。我们的实验表明,更深层次的模型在跨课程的概括性能中有效。此外,我们发现任何明确的DG算法都不优于经验风险最小化。最后,通过使用特定于主题的数据比较微调的结果,我们发现特定于主题的数据可能会由于会议间的可变性而导致的未见会话分类性能。
The inter/intra-subject variability of electroencephalography (EEG) makes the practical use of the brain-computer interface (BCI) difficult. In general, the BCI system requires a calibration procedure to acquire subject/session-specific data to tune the model every time the system is used. This problem is recognized as a major obstacle to BCI, and to overcome it, an approach based on domain generalization (DG) has recently emerged. The main purpose of this paper is to reconsider how the zero-calibration problem of BCI for a realistic situation can be overcome from the perspective of DG tasks. In terms of the realistic situation, we have focused on creating an EEG classification framework that can be applied directly in unseen sessions, using only multi-subject/-session data acquired previously. Therefore, in this paper, we tested four deep learning models and four DG algorithms through leave-one-session-out validation. Our experiment showed that deeper and larger models were effective in cross-session generalization performance. Furthermore, we found that none of the explicit DG algorithms outperformed empirical risk minimization. Finally, by comparing the results of fine-tuning using subject-specific data, we found that subject-specific data may deteriorate unseen session classification performance due to inter-session variability.