论文标题

爱因斯坦 - 加斯 - 骨网中的宇宙学解决方案,具有静态弯曲的额外尺寸

Cosmological solutions in Einstein-Gauss-Bonnet gravity with static curved extra dimensions

论文作者

Chirkov, Dmitry, Giacomini, Alex, Pavluchenko, Sergey A., Toporensky, Alexey

论文摘要

在本文中,我们对所有可能的解决方案进行了系统的研究,该解决方案具有静态紧凑的额外维度并扩大三维子空间(``我们的宇宙'')。与以前的论文不同,我们认为超二维子空间是恒定曲线的恒定歧管,这两种空间曲率迹象。我们提供了一个方案,如何在所有可能数量的额外维度中构建解决方案,并为所找到的解决方案执行稳定性分析。我们的研究表明,额外尺寸负空间曲率的溶液始终稳定,而具有正弯曲的溶液对于狭窄的参数范围稳定,并且该范围的宽度随着额外尺寸的增长而缩小。这解释了为什么在前面的论文中,我们在负曲率的情况下检测到了压缩,但是呈正曲率的情况仍未被发现。另一个有趣的特征是区分正面曲率和负曲率的病例是,后者不与最大对称的解(导致``几何沮丧'''的最大对称溶液并存),而前者则可能 - 注意到并讨论了这种差异。

In this paper we perform systematic investigation of all possible solutions with static compact extra dimensions and expanding three-dimensional subspace (``our Universe''). Unlike previous papers, we consider extra-dimensional subspace to be constant-curvature manifold with both signs of spatial curvature. We provide a scheme how to build solutions in all possible number of extra dimensions and perform stability analysis for the solutions found. Our study suggests that the solutions with negative spatial curvature of extra dimensions are always stable while those with positive curvature are stable for a narrow range of the parameters and the width of this range shrinks with growth of the number of extra dimensions. This explains why in the previous papers we detected compactification in the case of negative curvature but the case of positive curvature remained undiscovered. Another interesting feature which distinguish cases with positive and negative curvatures is that the latter do not coexist with maximally-symmetric solutions (leading to ``geometric frustration'' of a sort) while the former could -- this difference is noted and discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源