论文标题
定期驱动的自旋梯子的拓扑和动力学特征
Topological and dynamical features of periodically driven spin ladders
论文作者
论文摘要
对定期驱动的一维多体系统的研究已经提出了我们对复杂系统的理解,并刺激了量子模拟中有希望的发展。因此,通过研究定期驱动的自旋梯子的拓扑和动态方面,作为清洁准二维系统,沿着梯级方向旋转旋转相互作用,这是一个兴趣。具体而言,我们发现此类系统显示出次谐波磁化动力学,让人联想到有限系统大小的离散时间晶体(DTC)。通过使用广义的Jordan-Wigner转换,此功能可以归因于在Systems的同等Majorialana晶格中的Corner Majorana $π$模式(MPMS)(MPMS)。特别强调了梯子梯级方向的耦合如何防止单个旋转激发与单个旋转激发不同的状态之间的脱落性,从而保留了MPM诱导的$π/t $ quasienergy间距,使floquet eigenstates在存在参数的情况下存在。在严格的一维对应物中没有此功能,可能会在未来的较高尺寸浮雕多体系统的研究中产生令人着迷的后果。
Studies of periodically driven one-dimensional many-body systems have advanced our understanding of complex systems and stimulated promising developments in quantum simulation. It is hence of interest to go one step further, by investigating the topological and dynamical aspects of periodically driven spin ladders as clean quasi-one-dimensional systems with spin-spin interaction in the rung direction. Specifically, we find that such systems display subharmonic magnetization dynamics reminiscent to that of discrete time crystals (DTCs) at finite system sizes. Through the use of generalized Jordan-Wigner transformation, this feature can be attributed to presence of corner Majorana $π$ modes (MPMs), which are of topological origin, in the systems' equivalent Majorana lattice. Special emphasis is placed on how the coupling in the rung direction of the ladder prevents degeneracy from occurring between states differing by a single spin excitation, thus preserving the MPM-induced $π/T$ quasienergy spacing of the Floquet eigenstates in the presence of parameter imperfection. This feature, which is absent in their strict one-dimensional counterparts, may yield fascinating consequences in future studies of higher dimensional Floquet many-body systems.