论文标题

Landcovernet:全球基准土地覆盖分类培训数据集

LandCoverNet: A global benchmark land cover classification training dataset

论文作者

Alemohammad, Hamed, Booth, Kevin

论文摘要

定期更新和准确的土地覆盖地图对于监视17个可持续发展目标中的14个至关重要。多光谱卫星图像在全球规模上提供了高质量和有价值的信息,可用于开发土地覆盖分类模型。但是,这样的全球应用需要地理上多样化的培训数据集。在这里,我们提出了LandCovernet,这是一个基于Sentinel-2观测值的全球培训数据集,该数据集以10m的空间分辨率为基础。土地覆盖类标签是根据Sentinel-2的年度时间序列定义的,并通过三个人类注释者之间的共识来验证。

Regularly updated and accurate land cover maps are essential for monitoring 14 of the 17 Sustainable Development Goals. Multispectral satellite imagery provide high-quality and valuable information at global scale that can be used to develop land cover classification models. However, such a global application requires a geographically diverse training dataset. Here, we present LandCoverNet, a global training dataset for land cover classification based on Sentinel-2 observations at 10m spatial resolution. Land cover class labels are defined based on annual time-series of Sentinel-2, and verified by consensus among three human annotators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源