论文标题

RLOC:使用加固学习和最佳控制

RLOC: Terrain-Aware Legged Locomotion using Reinforcement Learning and Optimal Control

论文作者

Gangapurwala, Siddhant, Geisert, Mathieu, Orsolino, Romeo, Fallon, Maurice, Havoutis, Ioannis

论文摘要

我们提出了一种基于统一的模型和数据驱动的方法,用于四足动和控制,以实现在不平坦的地形上的动态运动。我们利用板载本体感受和外部感受反馈来将感觉信息映射到使用加强学习(RL)策略的脚步计划中。该RL政策在整个过程产生的地形上进行了模拟培训。当在线运行时,系统使用基于模型的运动控制器跟踪生成的脚步计划。我们在各种复杂的地形上评估了我们方法的鲁棒性。它表现出优先于稳定性而不是激进的运动的行为。此外,我们介绍了两个辅助RL策略,用于纠正全身运动跟踪和恢复控制。这些政策解释了物理参数和外部扰动的变化。我们在复杂的四倍体系统(Anymal版本B)上训练和评估我们的框架,并证明了向更大且更重的机器人Anymal C的转移性,而无需进行重新训练。

We present a unified model-based and data-driven approach for quadrupedal planning and control to achieve dynamic locomotion over uneven terrain. We utilize on-board proprioceptive and exteroceptive feedback to map sensory information and desired base velocity commands into footstep plans using a reinforcement learning (RL) policy. This RL policy is trained in simulation over a wide range of procedurally generated terrains. When ran online, the system tracks the generated footstep plans using a model-based motion controller. We evaluate the robustness of our method over a wide variety of complex terrains. It exhibits behaviors which prioritize stability over aggressive locomotion. Additionally, we introduce two ancillary RL policies for corrective whole-body motion tracking and recovery control. These policies account for changes in physical parameters and external perturbations. We train and evaluate our framework on a complex quadrupedal system, ANYmal version B, and demonstrate transferability to a larger and heavier robot, ANYmal C, without requiring retraining.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源