论文标题

才华横溢的反逆三角先生

The Talented Mr. Inversive Triangle in the Elliptic Billiard

论文作者

Reznik, Dan, Garcia, Ronaldo, Helman, Mark

论文摘要

颠倒椭圆台球N-周期的顶点相对于以一个焦点为中心的圆圈产生了一个刻在帕斯卡(Pascal)的利马斯(Limaçon)中的新的“焦点与内向”家庭。以下是其令人惊讶的不变性:(i)周长,(ii)余弦之和(iii)从反转中心(焦点)到顶点的距离之和。我们在n = 3案例中证明了这些,表明这个家庭(a)具有固定的gergonne点,(b)是一个三个周期的家族,由第二个,刚性移动的椭圆机弯曲,(c)填料,Barycenter,Barycenter,Barycenter,Barycenter,OrtheCenter,OrtheCenter,Nine-Point Center,Ninine Point Center,以及许多其他的Triangle Circiangle circianders Cirgian courigners。

Inverting the vertices of elliptic billiard N-periodics with respect to a circle centered on one focus yields a new "focus-inversive" family inscribed in Pascal's Limaçon. The following are some of its surprising invariants: (i) perimeter, (ii) sum of cosines, and (iii) sum of distances from inversion center (the focus) to vertices. We prove these for the N=3 case, showing that this family (a) has a stationary Gergonne point, (b) is a 3-periodic family of a second, rigidly moving elliptic billiard, and (c) the loci of incenter, barycenter, circumcenter, orthocenter, nine-point center, and a great many other triangle centers are circles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源