论文标题

关于可分离假空间的基数

On the cardinality of separable pseudoradial spaces

论文作者

Dow, Alan, Juhasz, Istvan

论文摘要

本文的目的是考虑有关各种可分离伪层(简而言之:SP)空间的最大基数的问题。这里最有趣的问题是,在ZFC中,是否存在大于$ \ Mathfrak C $的常规(或仅是Hausdorff)的SP。虽然这个问题是打开的,但我们确定了我们列出的许多非平凡结果:1。它与Martin的Axiom和$ \ Mathfrak C = \ Aleph_2 $一致,因为有一个非常紧密且紧凑的心脏紧缩$ 2^{\ Mathfrak C} $。 2。如果$κ$是可测量的基础主教,那么在通过添加$κ$许多Cohen Reals获得的强迫延伸中,每个计的常规SP空间最多都具有$ \ Mathfrak C $。 3。如果$κ> \ aleph_1 $ cohen Reals被添加到GCH型号中,则在扩展名中,每个pseudocompact s s sp space sp space sp space s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s sp sp sp sp sp sp sp sp c $的可数值可计数最多,最多具有$ \ mathfrak c $。 4。如果$ \ Mathfrak C \ Leq \ Aleph_2 $,则有一个0维的SP空间,具有可计数的密集隔离点,其基数大于$ \ Mathfrak C $。

The aim of this paper is to consider questions concerning the possible maximum cardinality of various separable pseudoradial (in short: SP) spaces. The most intriguing question here is if there is, in ZFC, a regular (or just Hausdorff) SP of cardinality greater than $\mathfrak c$. While this question is left open, we establish a number of non-trivial results that we list: 1. It is consistent with Martin's Axiom and $\mathfrak c =\aleph_2$ that there is a countably tight and compact SP of cardinality $2^{\mathfrak c}$. 2. If $κ$ is a measurable cardinal then in the forcing extension obtained by adding $κ$ many Cohen reals, every countably tight regular SP space has cardinality at most $\mathfrak c$. 3. If $κ>\aleph_1$ Cohen reals are added to a model of GCH, then in the extension every pseudocompact SP space with a countable dense set of isolated points has cardinality at most $\mathfrak c$. 4. If $\mathfrak c\leq\aleph_2$, then there is a 0-dimensional SP space with a countable dense set of isolated points that has cardinal greater than $\mathfrak c$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源