论文标题

逃脱:用于基于内核的机器学习算法的有效安全和私人点产品框架,包括医疗保健中的应用

ESCAPED: Efficient Secure and Private Dot Product Framework for Kernel-based Machine Learning Algorithms with Applications in Healthcare

论文作者

Ünal, Ali Burak, Akgün, Mete, Pfeifer, Nico

论文摘要

要培训复杂的机器学习模型,通常需要许多培训样本。特别是在医疗保健环境中,这些样本可能非常昂贵,这意味着一个机构通常没有足够的机构。从不同来源合并对隐私敏感的数据通常受数据安全和数据保护措施的限制。这可能会导致通过将噪声放在变量上(例如,以$ε$ -Differential私密性)或省略某些值(例如,对于$ k $ - 匿名性)来降低数据质量的方法。基于加密方法的其他措施可能会导致非常耗时的计算,这对于较大的多摩管数据尤其有问题。我们通过介绍Escaped来解决这个问题,该问题代表了有效的安全和私人点产品框架,从而使第三方中的多个来源的矢量乘积计算了DOT产品,后来又训练了基于内核的机器学习算法,同时既没有牺牲隐私,也没有增加噪音。我们评估了对艾滋病毒感染者的耐药性预测框架,以及精确医学中的多词降低性降低和聚类问题。就执行时间而言,我们的框架在不牺牲算法的性能的情况下极大地胜过了最合适的现有方法。即使我们仅显示基于内核的算法的好处,我们的框架可以为需要从多个来源的矢量乘积的进一步的机器学习模型打开新的研究机会。

To train sophisticated machine learning models one usually needs many training samples. Especially in healthcare settings these samples can be very expensive, meaning that one institution alone usually does not have enough on its own. Merging privacy-sensitive data from different sources is usually restricted by data security and data protection measures. This can lead to approaches that reduce data quality by putting noise onto the variables (e.g., in $ε$-differential privacy) or omitting certain values (e.g., for $k$-anonymity). Other measures based on cryptographic methods can lead to very time-consuming computations, which is especially problematic for larger multi-omics data. We address this problem by introducing ESCAPED, which stands for Efficient SeCure And PrivatE Dot product framework, enabling the computation of the dot product of vectors from multiple sources on a third-party, which later trains kernel-based machine learning algorithms, while neither sacrificing privacy nor adding noise. We evaluated our framework on drug resistance prediction for HIV-infected people and multi-omics dimensionality reduction and clustering problems in precision medicine. In terms of execution time, our framework significantly outperforms the best-fitting existing approaches without sacrificing the performance of the algorithm. Even though we only show the benefit for kernel-based algorithms, our framework can open up new research opportunities for further machine learning models that require the dot product of vectors from multiple sources.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源