论文标题

熵和量子相干性的测量

Measurement of entropy and quantum coherence properties of two type-I entangled photonic qubits

论文作者

Motazedifard, Ali, Madani, Seyed Ahmad, Vayaghan, N. S.

论文摘要

使用BBO非线性晶体(NLC)中的I型SPDC工艺,我们生成了一个极化的状态,靠近具有高可见性(高光泽度)$ 98.50 \ pm 1.33〜 \%$($ 87.71 \ pm 4.45〜 \%$)的最大可见度(高光泽)$ 98.50 \ pm 1.33〜 \%。我们将CHSH版本计算为贝尔不平等的CHSH版本,作为非本地现实主义测试,并发现了经典物理学或任何隐藏变量理论(HVT)的强烈违规,$ s = 2.71 \ pm 0.10 $。通过测量SPDC过程中的巧合计数(CC)率,我们在$(25.5 \ pm 3.4)\%$左右获得单光子探测器(SPDS)的量子效率,这与其制造商公司符合。正如预期的那样,我们验证了输入CW-LASER的CC速率与泵泵功率的线性依赖性,该速率可能会产生有效的二阶敏感性晶体。使用量子标准的测量理论,包括量子状态的层析成像重建,这是由于线性16个极化测量的线性集以及最大的类似型技术(MLT),这意味着基于数值优化,这意味着我们计算了物理性非测量的定义状态矩阵,这是基于物理性质非密度的确定性矩阵的,这是对非层次的确定性和实体的。通过具有最大似然密度算子,我们精确地计算了纠缠措施,例如同意,纠缠,缠结,对数负性和不同的纠缠熵,例如线性熵,von-neumann熵和Renyi 2-Entropy。最后,这种高亮度和低速纠缠的光子源可用于实验室中的短量量子测量。

Using the type-I SPDC process in BBO nonlinear crystal (NLC), we generate a polarization-entangled state near to the maximally-entangled Bell-state with high-visibility (high-brightness) $ 98.50 \pm 1.33 ~ \% $ ($ 87.71 \pm 4.45 ~ \% $) for HV (DA) basis. We calculate the CHSH version of the Bell inequality, as a nonlocal realism test, and find a strong violation from the classical physics or any hidden variable theory (HVT), $ S= 2.71 \pm 0.10 $. Via measuring the coincidence count (CC) rate in the SPDC process, we obtain the quantum efficiency of single-photon detectors (SPDs) around $ (25.5\pm 3.4) \% $, which is in good agreement to their manufacturer company. As expected, we verify the linear dependency of the CC rate vs. pump power of input CW-laser, which may yield to find the effective second-order susceptibility crystal. Using the theory of the measurement of qubits, includes a tomographic reconstruction of quantum states due to the linear set of 16 polarization-measurement, together with a maximum-likelihood-technique (MLT), which is based on the numerical optimization, we calculate the physical non-negative definite density matrices, which implies on the non-separability and entanglement of prepared state. By having the maximum likelihood density operator, we calculate precisely the entanglement measures such as Concurrence, entanglement of formation, tangle, logarithmic negativity, and different entanglement entropies such as linear entropy, Von-Neumann entropy, and Renyi 2-entropy. Finally, this high-brightness and low-rate entangled photons source can be used for short-range quantum measurements in the Lab.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源