论文标题

观察到的二进制数据序列的潜在量表回归模型:一种有限的似然方法

Latent function-on-scalar regression models for observed sequences of binary data: a restricted likelihood approach

论文作者

Asgari, Fatemeh, Alamatsaz, Mohammad Hossein, Vitelli, Valeria, Hayati, Saeed

论文摘要

在本文中,我们研究了一个功能回归设置,其中随机响应曲线未被观察到,并且仅在一系列相关的二元数据中观察到其二分法版本。我们提出了一个实用的计算框架,以通过参数扩展技术进行最大似然分析。与现有方法相比,我们的建议依赖于使用完整的数据可能性,其优势是能够有效地处理非平等间隔和缺失的观测值。所提出的方法用于在尺度上的函数回归设置中,潜在响应变量是在可分离的希尔伯特空间中采用值的高斯随机元素。通过引入一种自适应MCEM算法来提供功能回归系数和主组件的平滑估计,该算法可以绕过选择平滑参数。最后,通过各种模拟研究和实际案例研究证明了我们的新方法的性能。提出的方法在R软件包DFRR中实现。

In this paper, we study a functional regression setting where the random response curve is unobserved, and only its dichotomized version observed at a sequence of correlated binary data is available. We propose a practical computational framework for maximum likelihood analysis via the parameter expansion technique. Compared to existing methods, our proposal relies on the use of a complete data likelihood, with the advantage of being able to handle non-equally spaced and missing observations effectively. The proposed method is used in the Function-on-Scalar regression setting, with the latent response variable being a Gaussian random element taking values in a separable Hilbert space. Smooth estimations of functional regression coefficients and principal components are provided by introducing an adaptive MCEM algorithm that circumvents selecting the smoothing parameters. Finally, the performance of our novel method is demonstrated by various simulation studies and on a real case study. The proposed method is implemented in the R package dfrr.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源