论文标题

二维材料中可扩展的第一原理信息传输理论

Scalable first-principles-informed quantum transport theory in two-dimensional materials

论文作者

Bharadwaj, Sathwik, Ramasubramaniam, Ashwin, Ram-Mohan, L. R.

论文摘要

准确确定二维(2D)材料中的载体传输性能对于设计高性能纳米电子设备和量子信息平台至关重要。虽然第一原理计算有效地确定了与缺陷和杂质相关的原子电位,但它们无法在与设备应用相关的长度尺度上直接建模载体传输属性。在这里,我们开发了可扩展的第一原理量子传输理论,以研究2D材料的载体传输性能。我们得出一个非反应量子散射框架,以获得靠近散射中心的运输特性。然后,我们用$ \ textit {k} \ cdot \ textit {p} $扰动理论桥接我们的散射框架,并使用第一原则电子结构计算的输入来构建一种多功能的多尺寸形式主义,以实现Mesoscale现实设备的建模。我们的形式主义还解释了异源衰变模式的衰老模式的关键贡献。我们将这种形式主义应用于研究电子传输中侧向过渡金属元素化(TMDC)异质结构中的电子传输,并表明材料夹杂物可以通过比原始TMDC大的数量级来增强电子迁移率。

Accurate determination of carrier transport properties in two-dimensional (2D) materials is critical for designing high-performance nano-electronic devices and quantum information platforms. While first-principles calculations effectively determine the atomistic potentials associated with defects and impurities, they are ineffective for direct modeling of carrier transport properties at length scales relevant for device applications. Here, we develop a scalable first-principles-informed quantum transport theory to investigate the carrier transport properties of 2D materials. We derive a non-asymptotic quantum scattering framework to obtain transport properties in proximity to scattering centers. We then bridge our scattering framework with $\textit{k}\cdot\textit{p}$ perturbation theory, with inputs from first-principles electronic structure calculations, to construct a versatile multiscale formalism that enables modeling of realistic devices at the mesoscale. Our formalism also accounts for the crucial contributions of decaying evanescent modes across heterointerfaces. We apply this formalism to study electron transport in lateral transition-metal dichalcogenide (TMDC) heterostructures and show that material inclusions can lead to an enhancement in electron mobility by an order of magnitude larger than pristine TMDCs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源