论文标题
开普勒轨道的稳健路径跟踪
Robust Path-following for Keplerian Orbits
论文作者
论文摘要
这项工作引入了一种新型的遵循路径控制策略,其灵感来自著名的两体问题,旨在稳定任何开普勒轨道。利用两体问题的数学结构的见解,我们得出了采用滑动模式控制理论的强大路径遵循定律,以实现渐近收敛到有限的干扰。结果证明,由此产生的控制定律在渐近稳定。说明性的示例展示了其适用性,包括绕着加速运动点绕,修补了复杂模式的开普勒轨迹以及小行星itokawa周围的轨道维护。拟议的控制定律为轨道站保持问题提供了重要的优势,因为其滑动表面是根据通常用于定义轨道动力学的变量制定的。这种固有的对齐促进了轻松应用轨道站维护方案。
This work introduces a novel path-following control strategy inspired by the famous two-body problem, aiming to stabilize any Keplerian orbit. Utilizing insights from the mathematical structure of the two-body problem, we derive a robust path-following law adopting sliding mode control theory to achieve asymptotic convergence to bounded disturbances. The resulting control law is demonstrated to be asymptotically stable. Illustrative examples showcase its applicability, including orbiting an accelerated moving point, patching Keplerian trajectories for complex patterns, and orbital maintenance around the asteroid Itokawa. The proposed control law offers a significant advantage for the orbital station-keeping problem, as its sliding surface is formulated based on variables commonly used to define orbital dynamics. This inherent alignment facilitates easy application to orbital station-keeping scenarios.