论文标题

基于流动的多配对多对比度MRI图像到图像翻译的变形指南

Flow-based Deformation Guidance for Unpaired Multi-Contrast MRI Image-to-Image Translation

论文作者

Bui, Toan Duc, Nguyen, Manh, Le, Ngan, Luu, Khoa

论文摘要

来自损坏的对比的图像合成增加了可用于许多神经疾病的诊断信息的多样性。最近,图像到图像翻译在医学研究中引起了很大的兴趣,从成功使用生成对抗网络(GAN)到引入循环约束扩展到多个领域的引入。但是,在当前方法中,不能保证两个图像域之间的映射将是唯一的或一对一的。在本文中,我们介绍了一种新颖的方法,以基于可逆体系结构来实现未配对的图像到图像翻译。基于流的架构的可逆属性可确保图像对图像翻译的周期矛盾,而无需其他损失功能。我们利用连续切片之间的时间信息,以在未配对的体积医学图像中将一个域转换为另一个域的优化提供更多的限制。为了捕获医学图像中的时间结构,我们使用变形场探索了连续切片之间的位移。在我们的方法中,变形字段被用作指导,以使翻译的幻灯片在整个翻译中保持现实和一致。实验结果表明,与三个标准数据集中的现有基于深度学习的方法相比,使用我们提出的方法的合成图像可以在平方误差,峰值信噪比和结构相似性指数方面归档竞争性能,即HCP,MRBRAINS13和BRATS2019。

Image synthesis from corrupted contrasts increases the diversity of diagnostic information available for many neurological diseases. Recently the image-to-image translation has experienced significant levels of interest within medical research, beginning with the successful use of the Generative Adversarial Network (GAN) to the introduction of cyclic constraint extended to multiple domains. However, in current approaches, there is no guarantee that the mapping between the two image domains would be unique or one-to-one. In this paper, we introduce a novel approach to unpaired image-to-image translation based on the invertible architecture. The invertible property of the flow-based architecture assures a cycle-consistency of image-to-image translation without additional loss functions. We utilize the temporal information between consecutive slices to provide more constraints to the optimization for transforming one domain to another in unpaired volumetric medical images. To capture temporal structures in the medical images, we explore the displacement between the consecutive slices using a deformation field. In our approach, the deformation field is used as a guidance to keep the translated slides realistic and consistent across the translation. The experimental results have shown that the synthesized images using our proposed approach are able to archive a competitive performance in terms of mean squared error, peak signal-to-noise ratio, and structural similarity index when compared with the existing deep learning-based methods on three standard datasets, i.e. HCP, MRBrainS13, and Brats2019.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源