论文标题

使用SPTPOL数据的最佳CMB镜头重建和参数估计

Optimal CMB Lensing Reconstruction and Parameter Estimation with SPTpol Data

论文作者

Millea, M., Daley, C. M., Chou, T-L., Anderes, E., Ade, P. A. R., Anderson, A. J., Austermann, J. E., Avva, J. S., Beall, J. A., Bender, A. N., Benson, B. A., Bianchini, F., Bleem, L. E., Carlstrom, J. E., Chang, C. L., Chaubal, P., Chiang, H. C., Citron, R., Moran, C. Corbett, Crawford, T. M., Crites, A. T., de Haan, T., Dobbs, M. A., Everett, W., Gallicchio, J., George, E. M., Goeckner-Wald, N., Guns, S., Gupta, N., Halverson, N. W., Henning, J. W., Hilton, G. C., Holder, G. P., Holzapfel, W. L., Hrubes, J. D., Huang, N., Hubmayr, J., Irwin, K. D., Knox, L., Lee, A. T., Li, D., Lowitz, A., McMahon, J. J., Meyer, S. S., Mocanu, L. M., Montgomery, J., Natoli, T., Nibarger, J. P., Noble, G., Novosad, V., Omori, Y., Padin, S., Patil, S., Pryke, C., Reichardt, C. L., Ruhl, J. E., Saliwanchik, B. R., Schaffer, K. K., Sievers, C., Smecher, G., Stark, A. A., Thorne, B., Tucker, C., Veach, T., Vieira, J. D., Wang, G., Whitehorn, N., Wu, W. L. K., Yefremenko, V.

论文摘要

我们使用100度$^2 $的极化观测值从南极望远镜上的SPTPOL接收器中进行了100度$^2 $的极化观测,对宇宙微波背景(CMB)的重力进行了第一个同时的贝叶斯参数推理和最佳重建。这些数据达到的噪声水平低至5.8 $ $ $ k-arcmin的极化,该噪声水平足够低,以至于用于分析CMB镜头的典型使用的二次估计量(QE)技术非常明显。相反,贝叶斯程序从数据中提取所有镜头信息,并且在任何噪声级别都是最佳的。我们将重力镜头潜能的幅度推断为$ a_D \,{=} \,0.949 \,{\ pm} \,0.122 $使用贝叶斯管道,与我们的QE管道结果一致,但较小的误差栏。贝叶斯分析还提供了一种简单的方法来说明系统的不确定性,执行类似的工作,就像经常出现的“偏见硬化”,并由于极化校准从统计误差的几乎一半到有效零而降低了$ A_D的系统不确定性。最后,我们共同约束$ a_ϕ $以及$ a _ {\ rm l} $,这是对CMB功率谱的镜头样效果的振幅,这表明贝叶斯方法可以用来轻松地从最佳的镜头重建和从确切的cmb中来轻松地推断出参数,同时又有两者之间的相关性。这些结果证明了贝叶斯方法对真实数据的可行性,并为对以后对CMB的CMB极化测量的分析铺平了道路,SPT-3G,Simons天文台和CMB-S4的可行性,相对于QE相对于QE的改进可以达到1.5倍的约1.5倍的限制,对$ A_D $和7倍降低有效的有效镜头修复率降低了7倍。

We perform the first simultaneous Bayesian parameter inference and optimal reconstruction of the gravitational lensing of the cosmic microwave background (CMB), using 100 deg$^2$ of polarization observations from the SPTpol receiver on the South Pole Telescope. These data reach noise levels as low as 5.8 $μ$K-arcmin in polarization, which are low enough that the typically used quadratic estimator (QE) technique for analyzing CMB lensing is significantly sub-optimal. Conversely, the Bayesian procedure extracts all lensing information from the data and is optimal at any noise level. We infer the amplitude of the gravitational lensing potential to be $A_ϕ\,{=}\,0.949\,{\pm}\,0.122$ using the Bayesian pipeline, consistent with our QE pipeline result, but with 17\% smaller error bars. The Bayesian analysis also provides a simple way to account for systematic uncertainties, performing a similar job as frequentist "bias hardening," and reducing the systematic uncertainty on $A_ϕ$ due to polarization calibration from almost half of the statistical error to effectively zero. Finally, we jointly constrain $A_ϕ$ along with $A_{\rm L}$, the amplitude of lensing-like effects on the CMB power spectra, demonstrating that the Bayesian method can be used to easily infer parameters both from an optimal lensing reconstruction and from the delensed CMB, while exactly accounting for the correlation between the two. These results demonstrate the feasibility of the Bayesian approach on real data, and pave the way for future analysis of deep CMB polarization measurements with SPT-3G, Simons Observatory, and CMB-S4, where improvements relative to the QE can reach 1.5 times tighter constraints on $A_ϕ$ and 7 times lower effective lensing reconstruction noise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源