论文标题
学会将视觉效果从视频转移到图像
Learning to Transfer Visual Effects from Videos to Images
论文作者
论文摘要
我们通过从视频集合中传输时空视觉效果(例如熔化)来研究动画图像的问题。我们应对视觉效果传输方面的两个主要挑战:1)如何捕获我们希望提取的效果; 2)如何确保仅将效果而不是内容或艺术风格从源视频传输到输入图像。为了应对第一个挑战,我们评估了五个损失功能;最有希望的人鼓励生成的动画具有与源视频相似的光流和纹理动作。为了应对第二个挑战,我们仅允许我们的模型从上一个帧中移动现有的图像像素,而不是预测无约束的像素值。这会迫使任何视觉效果使用输入图像的像素,从而防止出现在输出中的源视频中的不必要的艺术风格或内容。我们在客观和主观的环境中评估了我们的方法,并显示出有趣的定性结果,这些结果表明了经历了非典型转换的物体,例如使面部融化或鹿开花。
We study the problem of animating images by transferring spatio-temporal visual effects (such as melting) from a collection of videos. We tackle two primary challenges in visual effect transfer: 1) how to capture the effect we wish to distill; and 2) how to ensure that only the effect, rather than content or artistic style, is transferred from the source videos to the input image. To address the first challenge, we evaluate five loss functions; the most promising one encourages the generated animations to have similar optical flow and texture motions as the source videos. To address the second challenge, we only allow our model to move existing image pixels from the previous frame, rather than predicting unconstrained pixel values. This forces any visual effects to occur using the input image's pixels, preventing unwanted artistic style or content from the source video from appearing in the output. We evaluate our method in objective and subjective settings, and show interesting qualitative results which demonstrate objects undergoing atypical transformations, such as making a face melt or a deer bloom.