论文标题
使用光子的量子计算优势
Quantum computational advantage using photons
论文作者
论文摘要
高斯玻色子采样利用了挤压状态,提供了一种表现量子计算优势的高效方法。我们对50个输入单模式挤压状态进行实验,具有较高的可区分性和挤压参数,它们被馈入具有完全连通性和随机转换的100模式超级损失干涉仪,并使用100个高效的单光子检测器进行了采样。整个光学设置是相锁定的,以保持所有光子数状态的叠加之间的高相干性。我们观察到多达76个输出光子单击,该单击键可产生$ 10^{30} $的输出状态空间尺寸,而采样率为$ 10^{14} $的速度比使用最先进的模拟策略和超级计算机。对所获得的样品进行了各种假设的验证,包括使用热状态,可区分的光子和均匀的分布。
Gaussian boson sampling exploits squeezed states to provide a highly efficient way to demonstrate quantum computational advantage. We perform experiments with 50 input single-mode squeezed states with high indistinguishability and squeezing parameters, which are fed into a 100-mode ultralow-loss interferometer with full connectivity and random transformation, and sampled using 100 high-efficiency single-photon detectors. The whole optical set-up is phase-locked to maintain a high coherence between the superposition of all photon number states. We observe up to 76 output photon-clicks, which yield an output state space dimension of $10^{30}$ and a sampling rate that is $10^{14}$ faster than using the state-of-the-art simulation strategy and supercomputers. The obtained samples are validated against various hypotheses including using thermal states, distinguishable photons, and uniform distribution.