论文标题

三维固体力学的无网体物理学深度学习方法

Meshless physics-informed deep learning method for three-dimensional solid mechanics

论文作者

Abueidda, Diab W., Lu, Qiyue, Koric, Seid

论文摘要

深度学习和搭配方法被合并并用于求解描述结构变形的部分微分方程。我们考虑了不同类型的材料:线性弹性,超弹性(新弹性)具有较大的变形,以及具有各向同性和运动学硬化的von mises可塑性。这种深层搭配方法(DCM)的性能取决于神经网络和相应的超参数的体系结构。提出的DCM是无误的,避免了任何空间离散化,这通常是有限元方法(FEM)所需的。我们表明,DCM可以在定性和定量上捕获响应,而无需使用其他数值方法(例如FEM)生成任何数据。数据生成通常是大多数数据驱动模型中的主要瓶颈。对深度学习模型进行了训练,以了解该模型的参数,从而得出准确的近似解决方案。一旦对模型进行了适当的训练,鉴于其空间坐标,几乎可以立即在域的任何位置获得溶液。因此,深层搭配方法可能是一种有前途的独立技术,可以解决与材料和结构系统变形以及其他物理现象有关的部分微分方程。

Deep learning and the collocation method are merged and used to solve partial differential equations describing structures' deformation. We have considered different types of materials: linear elasticity, hyperelasticity (neo-Hookean) with large deformation, and von Mises plasticity with isotropic and kinematic hardening. The performance of this deep collocation method (DCM) depends on the architecture of the neural network and the corresponding hyperparameters. The presented DCM is meshfree and avoids any spatial discretization, which is usually needed for the finite element method (FEM). We show that the DCM can capture the response qualitatively and quantitatively, without the need for any data generation using other numerical methods such as the FEM. Data generation usually is the main bottleneck in most data-driven models. The deep learning model is trained to learn the model's parameters yielding accurate approximate solutions. Once the model is properly trained, solutions can be obtained almost instantly at any point in the domain, given its spatial coordinates. Therefore, the deep collocation method is potentially a promising standalone technique to solve partial differential equations involved in the deformation of materials and structural systems as well as other physical phenomena.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源