论文标题

使用两步深度学习的Da Vinci研究套件上的套管卡和刀具相互作用力的估计

Estimation of Trocar and Tool Interaction Forces on the da Vinci Research Kit with Two-Step Deep Learning

论文作者

Wu, Jie Ying, Yilmaz, Nural, Kazanzides, Peter, Tumerdem, Ugur

论文摘要

在机器人微创手术过程中测量环境相互作用力的测量将使外科医生触觉反馈,从而解决一个长期存在的限制。从现有传感器数据中估算这种力避免了使用力传感器对系统进行翻新的挑战,但是由于机械机制中的摩擦和依从性等机械效应,很难。我们以前已经表明,可以训练神经网络以估计内部机器人关节扭矩,从而估计外力。在这项工作中,我们扩展了估计外部笛卡尔力量和扭矩的方法,并通过补偿仪器轴和插管密封之间以及套管卡与患者身体之间的相互作用而呈现出两步的方法来适应特定的手术设置。实验表明,这种方法分别提供了平均根平方误差(RMSE)为2 n和0.08 nm的外力和扭矩的估计。此外,两步方法可以在手术设置时间内增加5分钟的时间,大约4分钟来收集术中培训数据,1分钟和1分钟来训练第二步网络。

Measurement of environment interaction forces during robotic minimally-invasive surgery would enable haptic feedback to the surgeon, thereby solving one long-standing limitation. Estimating this force from existing sensor data avoids the challenge of retrofitting systems with force sensors, but is difficult due to mechanical effects such as friction and compliance in the robot mechanism. We have previously shown that neural networks can be trained to estimate the internal robot joint torques, thereby enabling estimation of external forces. In this work, we extend the method to estimate external Cartesian forces and torques, and also present a two-step approach to adapt to the specific surgical setup by compensating for forces due to the interactions between the instrument shaft and cannula seal and between the trocar and patient body. Experiments show that this approach provides estimates of external forces and torques within a mean root-mean-square error (RMSE) of 2 N and 0.08 Nm, respectively. Furthermore, the two-step approach can add as little as 5 minutes to the surgery setup time, with about 4 minutes to collect intraoperative training data and 1 minute to train the second-step network.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源