论文标题

在重新归一化小组和信息理论中的相关性

Relevance in the Renormalization Group and in Information Theory

论文作者

Gordon, Amit, Banerjee, Aditya, Koch-Janusz, Maciej, Ringel, Zohar

论文摘要

对复杂物理系统的分析取决于从许多其他人中提取相关程度的自由度的能力。尽管机器学习充满希望,但它也带来了挑战,其主要是解释性。通常不清楚与物理理论的标准对象相关的建筑和培训依赖的“相关”特征(如果有的话)。在这里,我们报告了理论结果,这可能有助于系统地解决此问题:我们在信息瓶颈(IB)压缩理论形式上定义的相关性的信息理论概念与重量级化组的现场理论相关性之间的相等性。我们分析表明,对于通过字段理论描述的统计物理系统,使用IB压缩发现的“相关”自由度确实与最低缩放维度的运算符相对应。我们从数值上确认我们的领域理论预测。我们研究IB溶液对数据物理对称性的依赖性。我们的发现提供了一个连接两个不同理论工具箱的字典,以及一个在物理中深度学习应用中建设性地纳入物理解释性的示例。

The analysis of complex physical systems hinges on the ability to extract the relevant degrees of freedom from among the many others. Though much hope is placed in machine learning, it also brings challenges, chief of which is interpretability. It is often unclear what relation, if any, the architecture- and training-dependent learned "relevant" features bear to standard objects of physical theory. Here we report on theoretical results which may help to systematically address this issue: we establish equivalence between the information-theoretic notion of relevance defined in the Information Bottleneck (IB) formalism of compression theory, and the field-theoretic relevance of the Renormalization Group. We show analytically that for statistical physical systems described by a field theory the "relevant" degrees of freedom found using IB compression indeed correspond to operators with the lowest scaling dimensions. We confirm our field theoretic predictions numerically. We study dependence of the IB solutions on the physical symmetries of the data. Our findings provide a dictionary connecting two distinct theoretical toolboxes, and an example of constructively incorporating physical interpretability in applications of deep learning in physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源